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KRIVINE THEOREM'

BY

D. AMIR AND V. D. MILMAN
Department of Mathematics, Tel Aviv University, Ramat Aviv, Israel

ABSTRACT

Measure concentration arguments are applied to get a power-type estimate for
the dimension of almost I, subspaces of isomorphs of {7 and for the length of
almost-symmetric sequences under a nonlinear-type condition.

1. Introduction

A well-known theorem of 1. L. Krivine [7] states that I, is finitely represented
in any isomorph of {, (1 = p = ). A qualitative finite-dimensional interpretation
is that, given p=1, C, k and ¢ >0, there is n = n(C, k, & p) so that every
n-dimensional space which is C-isomorphic to [, contains a k-dimensional
subspace (1 + & )-isomorphic to [5. A quantitative version, i.e., an estimate for
n(C k, & p), is given in [12] in the case 1<p <2, namely: n(Ck, e p)=
exp(¢.,C’k?™"). Pisier remarks there that a better estimate follows from the
results of [2]. He also remarks that the better results known for the cases p = 1,2
and o suggest that the estimate in [12] is not the ‘“right” one.

In this note we want to point out how a power-type estimate which in some
sense is the best possible, holding for all 1= p <, can be deduced from the
results of [2], i.e. by using measure concentration phenomena.

In Section 2 we present the general facts from [2] about measure concentra-
tion in a somewhat more systematic way and with some modifications due to
more recent results in this area (mainly [13]).

Section 3 deals with the finite-dimensional Krivine theorem. The application
of measure concentration to the existence of {1 + ¢ }symmetric sequences under
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a ‘‘nonlinear type condition’ is discussed in Section 4. (A sequence (x,, ..., x,)in
a normed space is “K-symmetric” if |2, si0ix. || = K| 27— axi | for every
choice of scalars a4, ..., a., every choice of signs &; = = | and every permutation
o of {l,...,n})

Section 5 is a corrigendum of Theorem 2.5 in [2] which contained a
computation mistake.

2. Normal Levy families (measure concentration phenomena)

2.1. By a normalized metric probability space (n.m.p.s) we mean a metric space
(Q, d) with diameter 1, and a Borel probability measure u on (Q, d). For the
n.m.p.s. ({},d, u) we define the Levy function

ao(8) =sup{l — u(A;); A CQ, u(A)=3}, where A, ={t€Q; d(t, A)= §}.

p

We call (0.);<, a 7-normal Levy family if aq, (8)= ave ™ for some ay and for

every § >0, n=1,2,....

2.2. We shall list now several known normal Levy families:

(i) Levy’s classical isoperimetric inequality, after normalization, yields that if
S.-1 is the unit sphere in the n-dimensional Euclidean space with the normalized
geodesic distance and the normalized Lebesgue measure, then (S.-\).-; 1s a
s -normal Levy family (with a,=1) (cf. [10] or [3]).

(i) The Gromov isoperimetric inequality implies (cf. [4]) that if Q. is the
product space {Si-,)" with the normalized /,-sum metric

dﬂ&oznfm<zcuﬁmyyu

and with the product measure, where mk = n, then ({2,,) is a 37°-normal Levy
family (again, with ao=1).

In the following discrete examples we assume that the finite space () carries
the equidistributed probability w(A)=|A |/|Q].

(iii) If E5={—1,1}" has the normalized Hamming metric

M&0=%Hhﬁfﬂh

the isoperimetric inequality for this space (cf. (1.3) in [2]) yields that (E2).-/is a
2-normal Levy family (with a,=3).

(iv) If TI, is the group of permutations of {1,...,n} with the normalized
Hamming metric
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d(m,w) = |{is m(0) # w0

then, as shown by Maurey [9], (II,) is a s-normal Levy family (with a,=1).

Both EZ and Il, are particular cases of a class of n.m.p.s. introduced by
Schechtman [13] who analyzed Maurey’s proof: Denote by ¥(c, n) the class of
finite metric spaces (), d) of diameter 1 such that there is a chain D°, D',... D"
of decompositions of {1, with each D* (k =1,2,...,n) refining D*™', D" ={()}
and D" ={{t};t €Q} are the trivial extreme decompositions, and such that
whenever Af, AF€ D* are both subsets of the same AL '€ D", there is a
one-to-one mapping ¢ ;0f Afonto A} with d(¥it,t)=c/n foreveryt € Af.

Schechtman’s results mean that if (0, € #(c,n), n =1,2,..., then ((0,), - is
1/16¢*-normal Levy family (with a,=1). Other examples of this class are:

(v) Q= E}" =TI} with the normalized Hamming metric

d((em). ("7 = o 1)1 S 6 5 m1 = = by (), ) # (€20, w0

is in #(2,hm). Indeed, taking D* to be the decompositions into the sets
determined by the first k =(i—1)h+j (1=i=m, 1=j=h) coordinates, if
A¥, A€ D" have the same first k — 1 coordinates, we take ¢ : A*— A* which
replaces & (j) = £’(j) by £\(j) and interchanges m (j) = 7 () with 7{(j), the
change affecting at most two coordinates.

Thus, if h.m, Zn and Q, = E>"xII;», then ()i, is a &-normal Levy
family.

(vi) C5, the space of all (unordered) m-tuples from {1,...,n} with the
normalized Hamming metric, is also in #(2,n). Once again, D* is the
decomposition determined by the first k coordinates. If A¥ has 0 at the k-th
coordinate and A has 1, then ¢}; puts 1 at the k-th coordinate and replaces the
first nonzero coordinate after the k-th by a zero. Thus, (C%)»-, is a s-normal
Levy family.

(vii) The same martingale argument as in [13] shows that if (Q,d, i) is any
n.m.p.s., then the product spaces )" with the /,-sum metric

1 1<
d.(s,t) = Z d(si, t)

and the product measure p", form a j-normal Levy family. Indeed, letting Fi
(k =0,...,n) be the field generated by the first k coordinates, we get for every
f:0Q"— R satisfying |f(s)— f(t)| = d.(s, 1),

fE(fka)—E(fka,l)f§% hence w™{|f —Ef|= 8} =2exp(— 8°n/4) etc.
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2.3. The Levy-function estimates enable us to show concentration in measure
of functions: If aa(8)= ave ™ and f:(— R has modulus of continuity w;(8),
consider a Levy mean (median) M; of f, i.e., such that u{r; f(¢+)= M;} =3 and
wit; f()= M;} = 3. Then

p{ts1f(1) — My | = w0y (8)} 2 1 - 2a0(8).
Thus, given N such functions fi,..., fv, we have for every § >0
p{t €Qfi(t)— M | = w,(8),i=1,...,N})=1-2Naq(s).

2.4. The Levy mean is close to the average Ef = [qo f(¢f)du : For every 8 > 0 we
have

|M; —Ef|= 7 (8)+ 20 (1)aa(8)
(2], p. 9).

2.5. Let F={f}L, be a family of N functions on (),d, ). In the further
applications it is crucially important to find at least one t, € £} (the same for all
the family {f.}iL,) such that every fi() is close enough to its average E;. Of
course, some conditions should be imposed on the continuity of the f, e.g.
Holder-continuity, Combining 2.3 and 2.4 leads to such a result.

ProposiTION.  If (1, d,Q) is an n.m.p.s. with aa(8)= ave ™ and f,: Q—>R,
i=1,...,N satisfy |f.(s)—fi(t)|=Cd(s, 1) (fori=1,...,Nand all s, t €Q),
then a sufficient condition for the existence of t EQ with |f,(t)—Ef.|<e for
i=1,...,Nis

£ . T y/2
C <§ min (3]\[, (logZ—aoN) ) .
Proor. If

5> (log 2aoN) "2

T
yet C8” < ¢/3, then by 2.3

u([reﬂ;lﬁ(t)-l\l,,.|<§,i=1,...,N])>1~—2Na0e‘*“2>0,
while by 2.4,

|M, —E; | <§+2Caoe-*“ <Ze.
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3. The finite-dimensional Krivine theorem

Applying the results of Section 2 to normed linear spaces, we shall use the
following two simple lemmas:

3.1. Lemma. If |-|l, l-Y are two norms on a linear space so that
x| =l|x |Il | = €/10 for all x in an & /10-net of the ||| - |||-unit sphere, then || || and
l- Il are (1+ &)-isomorphic.

(For the straightforward proof cf., e.g., the proof of Theorem 2 in [2].)

3.2. LemMA. For every norm on R™ and every € >0, there is an &-net
., Xn for the unit sphere with N <(1+2/¢)" ([3], Lemma 2.5).

3.3. The following finite-dimensional version of Krivine’s construction of
almost I, subspaces from symmetric sequences is given in [2] (Theorem 3.1).

THEOREM. If (yi,...,y.) is a symmetric finite sequence in a normed space X
satisfying

) ¢ (Slal) =S an|=c(Slal)”

forevery a, ..., a,, then for every ¢ > 0 there is a block sequence (u,, ..., u.) with
respect t0 (yi,...,yn) with

k 1ip k k l/p
(*%) (1—&)(2]01,—[") = §(1+e)<2|a,-|”> for every a,, ..., a,
=1 =1 j=1

u;
where
3p. . T _ € i
k=’ P=(pis)
(In fact, the u, are equally distributed and are constructed as a “geometric
series” — a normalization of a disjoint sum of h bumps of length ((a +1)/a)

and height ((a + 1)/a)" ™", where a, h are specially chosen integers.)

3.4. By 3.3, our task in the quantitative Krivine theorem reduces to getting
“good” symmetric sequences in isomorphs of J,.

THEOREM. If the sequence (xi,...,%.) in a normed space satisfies (*) above
then, for every e >0, it has a block sequence (y1,. .., yi) satisfying (+*), where

4
k ~ K(E, ClCz,p)nr/B’ r= (36516‘2)

and the function « is easily computed from the estimate on m below and Theorem
3.3.
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PrOOF. Partition (x,,...,x,) into m subsequences of h elements each,
(X1, X120 X h {X20s e o3 X2m )y o ooy (X - - - ., Xms ) @and define, for a ER™, t €
(EDY, me(ll,)":

h m
> 2 6@ m %) -
=1 =1

Let || a || =E(¢.) (over ES* xI13). Then

@a(t,m)=

1
llall =& k" la

P

so that if ||a || =1 then ||al-=|al, = C/h™" and therefore
h m
2, > ()@ myXy = L) iy i

j=1

& (), m () # (1)), 7i(j)) at most hméd times}

w¢.(3)=SUP{ , ;

i

hmd

ZI a; X,

§2sup{ ;max]aiuléClh’””}

hmd

Up
éZC:sup{(E |a,»”|"> ;maxla.-p|§C1h’””}
1 v

y=

= 2C| Cz(mg)”p.

Leta,,v=1,...,N, N=325/¢)" be an £/10-net for the || - ||| -unit sphere. To
find (¢, w) € E3" X II,, with | @, (t, @) — 1| = €/10 for all v it suffices, by 2.5 and

2.2(v), that
26,Cm™ <E min [L(B)" [—Bm "
2 30 6\eg /> 25
64m log?

(since in our case ay=1 and 7= hm/64), hence that

" <gezmin (6 (2) (i) )
m <60C.C2mm<6 =) °\1600) /-

and this is satisfied if, e.g.,

m =56 60C,Co)y P n

(and 25™ >360C,C,m). Since || || is symmetric, z, = Zi- 6 (77 v)xi0 ')
v=1,...,m is (1+ ¢)-symmetric by Lemma 3.1.

Applying Theorem 3.3 (after (1 + £)-change of the norm) we get yi,..., %
satisfying (**).
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3.5. This result is “‘almost” exact in the following sense: we cannot get here a
power k = n* with @ not dependent on € or on C = C,C..

ExXAMPLE. Let p, = g, =2 satisfy

11 _logC
P. G logn’

Then by [6] we know that d(/, .1;)= C.If E is any n"-dimensional subspace of
[, then, by a result of Lewis [8],

d(E, 13 = pean’ =112
while, by [6],
d(l,. 157 = )
Hence
d(E.13) = neo' ~a:1= ¢,

and if we want it to be =1+4+¢ <e’, we must have a <eflogC (similar
reasoning was used in [1]).

4. Symmetric sets in the range

4.1. Another application of mecasure concentration is to find large ‘“‘almost
symmetric” sets in the range of Lipschitz-Holder functions on an n.m.p.s.
(2. d. ). By 2.2 (vii). the powers (1), ., form a y-normal Levy family in the
I,-sum metric d{. It may happen that {Q2"),-, is a normal Levy family even in the
weaker [ -sum metric,

m 1r
d:‘(s, f) = }?271/’ ( Z di (Si, {,‘)’)

for some r = | (as in the case 2.2(ii) of Q = S,._,, where r =2). In fact the most
natural applications of the following proposition are to the cases Q= EY, r =1
and =S, ., r=2; see 4.3(i) and (ii).

4.2. ProposITION. Let (Q,d, ) be a compact n.m.p.s. with a measure-
preserving isometric fixed-point free involution t— —t and such that, for some
r=1 and 7, (O )= is a T-normal Levy family with the |.-sum metric and the
product measure u™. Let f : Q— X be a non-0 odd function (i.e., with f(—1)=
— f(1)) satisfying | f(s)— f()| = Cd(s,t) forsome 0<y=1,andletC, 2=q =
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®) be the q-Rademacher cotype constant of the normed linear space X (C, =
sup(Zisi|[x D) x € X, (B(|Ziciexi ) = 1) if 2= q <, C.=1). Then, for
every £ >0, a (1+ ¢)-symmetric m-tuple exists in the range of f, where

EE! t 2 €T y/2\ min(q/(q—1).r/y)

30CC, \20

ProOF (a modification of the proof of Theorem 2.2 in [2]). Since Q is
compact, we can specify a “positive half” Q° of Q so that u(Q)=3 and
Q"N (-Q")=. For every a €R™ define the function ¢, (t) =2/~ a;f()| on

Q" and then define on R™:

e dp(tn).

lall =E(e.)=

Il |l is clearly a semi-norm on R™. It is symmetric, since if € € E5 and 7 € I1,,

then
e m@li= [ [ 18 sarw)] duw)- - dugen)
= [ LS ase | dute) - duien)
=[S e auts) - duts)
= lall-
Since ||| is unconditional,
e ll = max || ae; }| =max|a [ECf]),
and ||| || is a norm. We also have, for every 1 =q <o,

e du(ty)

J 2 2‘9“1
F £t€EET i=1

S L (Sal ) e dea)
=

lall=

2

v

Q,l\)

[ (Slarnrr) duw - dunta)

ﬁl»—-

v

ol

el ECIFD-
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Therefore, if || a || =1then|al, = C,/E(||f|) and, for every s, t € Q™, we have

[e()= 0012 3 ar] 1)~ £(6)]

=Jal. ( 1) =rwl)”

q-1)/q

=B (&40 )

Since 22, df (0< a =2) constrained by d; =20, 2., d;=mé" (r = 1) attains its

maximum when 4, =8 (j=1,...,m) if @« =r, and when d,=m"'8, d; =0
(j=2,...,m)if a =r, we get the estimates:
CC - .
o (B) S ==t ey g Mo <
O =57 a1

msr  if Y=,

__CC
e )= EFD g-1

(for g = we simply have

< Cm ,
o ®= g1y ")

Take an &/10-net for the |- ||| -unit sphere, (a.).-;, with 2N ~ (30/¢)™. Since
E(¢.,)= |lalll =1, we can apply 2.5 to get t € Q™ so that | ¢,, (¢)— 1| = ¢/10 for
all v=1,...,N, provided that

max((q—l)iqy/ry - € [ ET v
m <= = (and m >log2aoT).

CC,
E(lIf1) 30130
4.3. (i) In the special case f: Si-1— S(X) (the unit sphere of X) in which
r=2, 7 =xk/2, Proposition 4.1 yields a (1 + ¢ )-symmetric sequence of length
8e’>(CC,)' "9k 4™V ([2], Theorem 2.2).
(ii) A similar estimate is obtained for f: E5— S(X). This time r = 1, 7 =2k,
hence we get a (1 + ¢ )-symmetric sequence of length 8¢ *(CC,) k™" /%=1

4:4. CoROLLARY. If (xi,...,Xx) is a sequence in the unit ball of the normed
linear space X such that E(||Z_, ex:||) = 6k for some 1= p <2, then there are
m choices of signs ¢’ € E7 so that the sequence y; =Zf_ elx,, j=1,....,m is
(1+ &)-symmetric where m = ck'?"'”, ¢ = £*78/200.

Proor. Consider f: E5— X defined by f(¢t)= Sk, tx,. By the triangle in-
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equality, [|f(s)— f(t)|| = 2kd(s, t). By Proposition 4.2 with ¢ =, C, = 1, we can
take

m = £9k|/p ((‘;‘_k)]/:: 83/: Oki/p—llz
30-2k \10 - 60V10

This result which we have for a “linear type” sequence by a “nonlinear”
general approach is not the best possible. In this case the methods of Johnson
and Schechtman and Pisier yield better results (cf. [11]).

4.5. Unfortunately, one cannot get a ““good” n = n(k, C, y) so that an f as in
4.3(i) or (ii) will exist for all n-dimensional spaces X. This is shown by the
following argument (cf. [5]): Let X = [Z, and f as in 4.3. Then each coordinate
fi(®)=(f()): is odd, hence Ef =M, =0. It satisfies also the same
Lipschitz-Holder estimate, hence by 2.5,

/2
-| £ ;= . 1o Ll T
wit; | fi@)<1,i=1,...,n}>0 if C<3imin <3 , (logZa{.n) ) .
This cannot happen since max,=i=. | f; (t)| = 1 for all t € Q. Thus, for n > 10C we
must have 7 < (3C)2’y log2a,n. But 7 = 6k for some 6, hence we must have

1 -2
nk, C)> Ta. exp(6,kC ™).

5. Symmetric block sequences

5.1. The measure concentration argument in E: was applied in [2], Theorem
2.3 to get from a “type attaining” sequence in a normed space X an “almost
unconditional” block sequence and then, in Theorem 2.4, the measure concen-
tration argument in I, was used to get an ““almost symmetric” block sequence.
This could have been done in one step using the measure concentration in the
product space E5* x IT%, improving the estimate from cn @ "¢ 1o ¢, n PP
(for details, see: D. Amir, Some applications of concentration phenomena,
Longhorn Notes, The University of Texas Functional Analysis Seminar,

1982-1983, pp. 161-178).

5.2. There is a calculational mistake in Theorem 2.5 of [2]. We shall give a
“more correct” version of it here.

THEOREM. Let p €(1,2), 6, €(0,1). If (x1,...,x.) is a sequence of norm-1
elements in a normed space x such that E(||2-, ex.||)= 0n'", then there is a
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(1+ £)-symmetric sequence {yi,....y.} of blocks with disjoint support and =+ 1
coefficients and of length

_ _1_ 32 (2—p)3p?
m=zagf N :
PrROOF. Let
p-p,@-p) ,_ 2B
2 2p 2B+p
Then 0 < a < B < 1. As in the proof of Theorem 2.5 in [2] we get a subset, which
we may assume to be x,...., Xun. km = n"", such that
E(] S ex|)zlapr
X, EA

for each of its subsets A of length | A |= (km )™ (in particular, by our choice of
m, k, @ and B, when |A | = k, provided n > n(e, p)).
For a €R", (t, w) € Ei" X I, define

m Ik
Ca(t, W)= ” 2} D Y S
j=

i=( =Tk +1

N

and then || a ||| = E(¢,). We have || a ] = k®""||a]. hence, if || a, || =1, then
w4, (8)=2mk'*""8. Taking an &/10-net for the ||-||-sphere, a1.....an. N ~
(20/&)", (t. w) € Es" X Il satisfying

leo(t. )= 1]=e/I0 forv=1,....N

exists provided

2k < £ (E) "
3064 -

hence if

which holds in our case (we have to check that n’ < k™, i.e., that m™ < n). By
Lemma 3.1,
jk
y; = i=(j21)k+l LX) j=1,....m,

1s (1 + £)-symmetric.
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REMARK. We also get an estimate on the characteristic function A(v)=
i1 y: || of the (almost) symmetric sequence (y:)izi: A (v) = n(kv)®"”.
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