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ABSTRACT 

Measure concentration arguments are applied to get a power-type estimate for 
the dimension of almost lp subspaces of isomorphs of l~, and for the length of 
almost-symmetric sequences under a nonlinear-type condition. 

1. Introduction 

A well-known theorem of I. L. Krivine [7] states that lp is finitely represented 

in any isomorph of lp (I =< p =< oo). A qualitative finite-dimensional interpretation 

is that, given p _ ~ l ,  C, k and e > 0 ,  there is n = n ( C , k , e , p )  so that every 

n-dimensional  space which is C-isomorphic to l; ,  contains a k-dimensional  

subspace (1 + e)- isomorphic to l~. A quantitative version, i.e., an estimate for 

n ( C , k , e , p ) ,  is given in [12] in the case l < p < 2 ,  namely: n(C,k,e ,p)<= 

exp(¢,.~CPk p ~). Pisier remarks there that a better  estimate follows from the 

results of [2]. He  also remarks that the better  results known for the cases p = 1,2 

and ~ suggest that the estimate in [12] is not the "r ight"  one. 

In this note we want to point out how a power-type estimate which in some 

sense is the best possible, holding for all 1 =< p < ~, can be deduced from the 

results of [2], i.e. by using measure concentration phenomena.  

In Section 2 we present the general facts from [2] about measure concentra- 

tion in a somewhat  more systematic way and with some modifications due to 

more recent results in this area (mainly [13]). 

Section 3 deals with the finite-dimensional Krivine theorem. The application 

of measure concentration to the existence of (1 + e)-symmetric  sequences under 
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a "nonlinear type condition" is discussed in Section 4. (A sequence (x, . . . . .  x,) in 

a normed space is "K-Symmetric" if IIZT_~ e,o~x.~,,,H<= K IIZ7, a,x, II for every 
choice of scalars aT . . . . .  c~.. every choice of signs e~ = -+ 1 and every permutation 

7r of {1 . . . . .  n}.) 

Section 5 is a corrigendum of Theorem 2.5 in [2] which contained a 

computation mistake. 

2. Normal Levy families (measure concentration phenomena) 

2.1. By a normalized metric probability space (n.m.p.s) we mean a metric space 

(1~, d)  with diameter 1, and a Borel probability measure ~ on (~. d). For the 

n.m.p.s. (1), d,/z) we define the Levy function 

a~(8) = sup{1 - /z (A~) ;  A C l-l,/z (A) _-> ½}, where A~ = {t E ~ ;  d(t, A )  <-_ 8}. 

We call (1~,)~=1 a T-normal Levy family if a~. (8)_-< a,e -~"~2 for some c~0 and for 

every 8 > 0 ,  n = l , 2  . . . . .  

2.2. We shall list now several known normal Levy families: 

(i) Levy's classical isoperimetric inequality, after normalization, yields that if 

S,_~ is the unit sphere in the n-dimensional Euclidean space with the normalized 
geodesic distance and the normalized Lebesgue measure, then (S,-I)~:~ is a 
1 ~'2-normal Levy family (with a,, = 1) (cf. [10] or [3]). 

(ii) The Gromov isoperimetric inequality implies (cf. [4]) that if ~ ,  is the 
product space (Sk-,)" with the normalized /2-sum metric 

dT(s , t )= m -'/2 d~(s,,ti) ~ 

and with the product measure, where mk >--_ n, then (l) ,)  is a ~---normal Levy 

family (again, with ao = 1). 
In the following discrete examples we assume that the finite space ~ carries 

the equidistributed probability p ~ ( a ) =  [A [/11)t. 
(iii) If E~ = { - 1 ,  1}" has the normalized Hamming metric 

d ( s , t ) - l  l { i ;s ,#  t,}[, 
--n 

the isoperimetric inequality for this space (cf. (1.3) in [2]) yields that (E~)]=, is a 

2-normal Levy family (with ao = ½). 
(iv) If II, is the group of permutations of {1 . . . . .  n} with the normalized 

Hamming metric 
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d(~-, ~ ' ) -  1 [{i. ~ ( i ) ~  ~r'(i)} I 

then, as shown by Maurey [9], (H,)  is a A-normal Levy family (with ao = 1). 
Both E~ and PI, are particular cases of a class of n.m.p.s, introduced by 

Schechtman [13] who analyzed Maurey's proof: Denote by 5¢(c, n) the class of 

finite metric spaces (~, d) of diameter 1 such that there is a chain D °, D I . . . . .  D" 

of decompositions of [l, with each D k (k = 1,2 . . . . .  n) refining Dk-I ,D °= {1~} 

and D " = { { t } ; t  ~ }  are the trivial extreme decompositions, and such that 

whenever A~,A~E D k are both subsets of the same A ~ I E  D k-~, there is a 

one-to-one mapping ~b~ki of A ~ onto A ~ with d(~b~d, t) <- c/n for every t @ A ~. 
Schechtman's results mean that if 1~, E 5e(c, n), n = 1 ,2 , . . . ,  then (I),)~ ~ is 

1/16cZ-normal Levy family (with a,i = 1). Other examples of this class are: 
(v) fl = E~" = YI~' with the normalized Hamming metric 

d((e, cr),(e', ~r'))= ~m [{(i,j);1 <= i <= m, 1 =< j <= h,(e~(j),1r~(j)) ~ (e'~(j), ~r'~(j))} ] "  

is in 5¢(2, hm). Indeed, taking D k to be the decompositions into the sets 

determined by the first k = (i - 1)h + j  (1 _-< i ~ m, 1 ~ j  _-< h) coordinates, if 
A ~, A k E D k have the same first k - 1 coordinates, we take q~ : A ~---> A ) which 

replaces e~ ( j ) =  el~(j) by el')(j) and interchanges 7r~ ( j ) - -  1rl~(]) with 7rl')(]), the 
change affecting at most two coordinates. 

Thus, if h,m~.>=n and f~, = E2-"-xlq~'-, then (~'~n)~=l is a A-normal Levy 
family. 

(vi) C2,  the space of all (unordered) m-tuples from {1 . . . . .  n} with the 
normalized Hamming metric, is also in b°(2, n). Once again, D ~ is the 
decomposition determined by the first k coordinates. If A ~ has 0 at the k-th 

coordinate and A~ has 1, then q~k.j puts 1 at the k-th coordinate and replaces the 
C n first nonzero coordinate after the k-th by a zero. Thus, ( m),=~ is a &-normal 

Levy family. 

(vii) The same martingale argument as in [13] shows that if (f~, d,/z) is any 
n.m.p.s., then the product spaces fl" with the /.-sum metric 

din(s, t) -- 1 ~ d(si, ti) --l'li=l 

and the product measure /z", form a ~6-normal Levy family. Indeed, letting Fk 

(k = 0 . . . . .  n) be the field generated by the first k coordinates, we get for every 

f :  f~" ---> R satisfying I f ( s ) - f ( t ) l  <= d~,(s, t), 

t E ( f l F k ) _ E ( f l F  ~ , ) [<1  hence tz"{If-Ef[>=6}<=Zexp(-62n/4) etc. 
tl 
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2.3. The Levy-function estimates enable us to show concentrat ion in measure 

of functions: If an(6)_-< aoe - ~  and f : f l ~  R has modulus of continuity ~or(3 ), 

consider a Levy mean (median) M t of f, i.e., such t h a t / z  {t; f ( t )  < Mr} >= 1 and 

t z{ t ; f ( t )  >- Mr} ~ ½. Then 

/z{t; I f ( t ) -  Mr t<= ~or (~)} _>- 1 - 2a . (6 ) .  

Thus, given N such functions fl . . . . .  fN, we have for every 6 > 0 

/x({t E l'l;/f~ (t) - Ms, 1_-< wt, (6), i = 1 . . . . .  N}) _-> 1 - 2Nan(6) .  

2.4. The Levy mean is close to the average E f  = f , f ( t ) d t t  : For every 6 > 0 we 

have 

([21, p. 9). 

[Mr -Ef l - -<  ~or (6) + 2~ot (1 )a . (6 )  

2.5. Let F = {J6}~=1 be a family of N functions on (fl, d,/z).  In the further  

applications it is crucially important  to find at least one to E 1) (the same for all 

the family {/~}~=~) such that every f~(to) is close enough to its average Er,. Of 

course, some conditions should be imposed on the continuity of the f~, e.g. 

H61der-continuity. Combining 2.3 and 2.4 leads to such a result. 

PROPOSITION. I f  (fl, d, fl)  is an n.m.p.s, with aa(6) <- _ aoe -~8"- and ]~ :I-I--~R, 

i = 1 . . . . .  N satisfy I f~ ( s ) - f~  (t)l <-_ Cd(s, t) ~ (for i -- 1 , . . . ,  N and all s, t ~ fl), 
then a sufficient condition for the existence of t E f l  with [f~ ( t ) -  Efi ] < e for 
i = 1  . . . . .  N i s  

PROOF. If 

yet C6 ~ < e/3, then by 2.3 

tz ( { t E gl; ' f~( t ) -  Mr, [ < 3 ' i = 1  . . . .  , N  > l - 2 N a o e - ' ~ 2 > O ,  

while by 2.4, 

I Mh - Er, I < 3 + 2Cao e-'~2 < ]e. 
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3. The finite-dimensional Krivine theorem 

Applying the results of Section 2 to normed linear spaces, we shall use the 
following two simple lemmas" 

3.1. LEMMA. If II'll, II1" 1tl are two norms on a linear space so that 

l llx II-Illx II11 ---  /10 for allx in an e/lO-netofthe I11" [[[-unit sphere, then II 11 and 
Ill 111 are (1 + e)-isomorphic. 

(For the straightforward proof cf., e.g., the proof of Theorem 2 in [2].) 

3.2. LEMMA. For every norm on R m and every e >0,  there is an e-net 

x l , . . . ,  XN for the unit sphere with N < (1 + 2/e) m ([3], Lemma 2.5). 

3.3. The following finite-dimensional version of Krivine's construction of 
almost l~ subspaces from symmetric sequences is given in [2] (Theorem 3.1). 

THEOREM. If (yl . . . . .  y,)  is a symmetric finite sequence in a normed space X 

satisfying 
n \ 1/p \ 1/p 

for every ~ . . . . .  a,,  then for every e > 0 there is a block sequence (ul . . . . .  uk ) with 

respect to (y~, . . . ,  y,)  with 

(**) (1-e)(j=~lozj[e)I/P--<_lj=~o~,u j _-<(l+e)(j=~[ajlP) I/p foreveryoll,...,O~k, 

where 
k _-> F3pn r, F = 

(In fact, the u, are equally distributed and are constructed as a "geometric 

series" - -  a normalization of a disjoint sum of h bumps of length ((a + 1)/a~ 

and height ((a + 1)/a) ~h-j~/p, where a, h are specially chosen integers.) 

3.4. By 3.3, our task in the quantitative Krivine theorem reduces to getting 

"good" symmetric sequences in isomorphs of Ip. 

THEOREM. If the sequence ( x l , . . . ,  x , )  in a normed space satisfies (*) above 

then, for every e > O, it has a block sequence (yl . . . . .  yk) satisfying (**), where 
[ P 

and the function K is easily computed from the estimate on m below and Theorem 

3.3. 
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PROOF. Partition (xl . . . . .  x . )  into m subsequences of h elements each, 

(x~,~, x,.2 . . . . .  X,.h), (X2.~ . . . . .  X2.h) . . . . .  (X.~.~ . . . . .  , Xm.h) and define, for a E R",  t 
(Era) h, rr E (II,,)": 

¢p,(t, r r ) =  2 2 ti(j)a~,(i,xi,i . 
i = l  i=1  

Let III a HI -- E(q~,) (over ET" x II~). Then 

> 1 I/p 
Ill a III = E h Ila lip, 

s o  that if III a III--lthen Ilall~ Ilall~ =< C,h -''p and therefore 

{ 2 2 t',O)~,,,)x,,; 6% (6) = sup ti (j )a ~,c;~xi,i - ; 
i = l j =  

(t~(/'), ~ , ( j ) ) / ( t ' , ( j ) ,  rr'~(j)) at most h m 3  times} 

_<-2sup { ~=,~'~acx'° ; m a x I % [ < = G h ~  '/P} 

=< 2C2sup I ol;~ J p ; m a x l a ¢ l < = G h  ';p 
u = l  u 

-lip = 2C,  G ( m a )  . 

Let a,, u = 1 . . . . .  N, N = ½(25/e)" be an e/10-net for the II1 III-unit sphere. To 
find (t, ~r) @ E ~  h x II~ with I q~.~ (t, ~ r ) -  1 I --< e/10 for all e it suffices, by 2.5 and 

2.2(v), that 

) 2C,  G m  '/p <~-~ min 

(since in our case o~,,= l and r = h m / 6 4 ) ,  hence that 

m l / P <  60CIC2 min eh i/2p 

and this is satisfied if, e.g., 

I (2p+l)13lt~l)Zm ~ ~-2p/3 1/3 m = r~e ~,,, ,~,~2) n 

(and 25" > 3 6 0 C 1 C 2 m ) .  Since II1" III is symmetric,  z. = E~=, t~(TrT'u)x,.~i,~ ) 

e = 1 . . . . .  m is (1 + e)-symmetric by Lemma 3.1. 

Applying Theorem 3.3 (after (1 + e)-change of the norm) we get y, . . . . .  yk 

satisfying (**). 
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3.5. This result is " a lmos t "  exact in the following sense: we cannot  get here a 

power  k = n ~' with cr not dependent  on e or on C = C~C:. 

EXAMPLE. Let p. =< q~ ~ 2 satisfy 

± _  1 :  log c 
p. q,, l o g n  " 

Then  by [6] we know that d(l~., l~.) = C. If E is any n~-dimensional  subspace of 

l~. then, by a result of Lewis [8], 

d(E, l~") =< n ~(q" L/_) 

while, by [6], 

Hence  

and if we want it to be 

reasoning was used in [1]). 

d(l~' ,  1~") = n ~p~' -1/2) 

d(E,  l~,~') G n ~(po'-q''): C ~', 

- < l + e < e  ~, we must have a < e / I o g C  (similar 

4. Symmetric sets in the range 

4.1. Ano the r  application of measure concentra t ion is to find large "a lmost  

symmetr ic"  sets in the range of Lipschi tz-H61der functions on an n.m.p.s. 

([Ld,/x) .  By 2.2 (vii), the powers ({Y');,~,. form a ~-normal  Levy family in the 

L-sum metric d,. It may happen that ({Y')~ ~ is a normal  Levy family even in the 

weaker  /,-sum metric, 

d ~ ( s , t ) = m  " ( ~  d~(s~,t~)*)'" 
i = 1  

for some r_-> 1 (as in the case 2.2(ii) of ~ = S,, ~, where r = 2). In fact the most  

natural applications of the following proposi t ion are to the cases ~ = E~', r = 1 

and • = Sm-~, r = 2; see 4.30) and (ii). 

4.2. PROPOSITION. Let ( ~ , d , / ~ )  be a compact n.m.p.s, with a measure- 

preserving isometric fixed-point free involution t--> - t and such that, for some 

r >= 1 and ,c, (~m)~,=~ is a "c-normal Levy family with the l,-sum metric and the 

product measure m. Let f : ~---~ X be a non-O odd function (i.e., with f ( -  t) = 

- f ( t ) )  satisfying IIf(s) - f(t)II =< Cd(s, t) ~ for some 0 < 3' -< 1, and let Cq (2 <- q <= 
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oz) be the q-Rademacher cotype constant of the normed linear space X (Cq = 
sup(~7=.llx, I1")"~; x, E x, (E(IY,,=, ~,x, 11") ''" =< 1) if 2=< q < ~, C~= 1). Then, for 
every e > 0, a (1 + e)-symmetric m-tuple exists in the range of f, where 

(~E(I f f l l )  ( er'~'=~ n''''v'"-'''~, 
m = ~ 3OCG \T6/ ! 

PROOF (a modification of the proof  of Theorem 2.2 in [2]). Since 1~ is 

compact ,  we can specify a "posit ive half" f F  of f~ so that / . t (fV)=½ and 

~+ N ( -  fV)  = Q. For every a E R"  define the function q~a (t) = IlZC?=, a,f(t,)ll on 
fv ' ,  and then define on R ' :  

III a Ill = E ( ~ o ) =  f n " "  J'a ,=~ aft(t,) dp.(t ,) . . ,  dl~(t,.). 

II1" Ill is clearly a semi-norm on R m. It is symmetric,  since if e e E ~  and ~r e 11,. 
then 

]ll(~, ~ ) ( a ) l l l  = £~ " " fn ,=~ e;a,~,j)f(tj) d lz( t , )"  " dlz(t,,) 

• .. ~, ;=~ ai f (e .  ,,t~ ,;) dlz( t , ) . . ,  d~(t,.) 

= III a Ill. 

Since II1" I[I is uncondit ional ,  

Ill a Ill => ma x Itl a;ei Ill = max la;/E(ttfl l) ,  
I I 

and II1" Ill is a norm. We  also have, for every 1 =< q < ~, 

Ilia Ill = fo..., dlz( t , )""  dtz(tm) 

9" ] I°llf(t;)II")""dtt(tO dry(t,.) ...f,,+ . . .  

> 1  
= ~  Ila IIq E(llfll). 
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Therefore.  if Ill ~ III = ~ then II~ II, ~ G/E(I I f l I )  and. for every s. t E O~ ~", we have 

Icp.(s)- q~.(t)l <-_ ~ Ja, I Jlf(s,)-f(ti)ll 
j = l  

=<II,,L nf(s,)- f(t,) ~"~-" 
= 

< CG d(s. t,) "~"~-" 
= E ( l l f l l )  = 

Since Yj%l d7 (0 < a =< 2) constrained by d, = O, Ei"=~ d; = m6 ~ (r >-_ 1) attains its 

maximum when d i = 6  ( ] = 1  . . . .  , m )  if c~_<-r, and when d ~ = m " &  d i = O  

(j = 2 . . . . .  m )  if a => r, we get the estimates: 

w~°(3)<= CCq m,  q Wq6~ if Y_q =<r, 
E(l]f[[) q 1 

CCq m ~ ' 3  ~ if y =>r 
~°'~'(3)--< E(llfll) q 1 

(for q = oo we simply have 

~o~. (~) = < Cm ) 
E ( i l f l ] )  ~ " 

Take an e/10-net  for the ]]1" HI-unit sphere, (a~.)~'=,, with 2 N - ( 3 0 / e )  m. Since 

E ('Coo) = III" ILl = 1, w e  can apply 2.5 to get t E ~1 '~ so that ] ~ao (t) - 1 ] _-< e/10 for 
all v = 1 . . . .  , N, provided that 

E(IIflI) m -3-0 \3-01 (and m > log2a0~'). 

4.3. (i) In the special case f : &  ,---> S ( X )  (the unit sphere of X)  in which 

r = 2, ~" = ~'2k/2, Proposition 4.1 yields a (1 + e)-symmetric  sequence of length 

Oe3(CCq) ~1 q~/qk ~q/zCq-~) ([2], Theorem 2.2). 

(ii) A similar estimate is obtained for f : E~---> S ( X ) .  This time r = 1, r = 2k, 

hence we get a (1 + e)-symmetric  sequence of length Oe3(CCq) 2km~""/2'~q/:(q-z~). 

4:4. COROLLARY. I f  (X~ . . . . .  X~) is a sequence in the unit ball of  the normed 

linear space X such that E([[E~=~ e~x~ [[) => Ok '/p for some 1 <= p < 2, then there are 

m choices of  signs e j E E ~  so that the sequence Yi = E~-t e~x,, j = 1 . . . . .  m is 

(1 + e)-symmetric  where m = ck ~/p-~/:, c = e3/20/200. 

PROOF. Consider  f : E ~  X defined by f ( t ) =  EL~ t~x~. By the triangle in- 
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equality, I [ f ( s ) -  f( t) l  I _-< 2kd(s,  t). By Proposition 4.2 with q = oc Cq = 1, we can 

take 

m = 
e O k "  ( e k )  ~': = e 3/._ Ok ''p-m 

30 .2  k 60 X/1-O " 

This result which we have for a "linear type" sequence by a "nonl inear"  

general approach is not the best possible. In this case the methods of Johnson 

and Schechtman and Pisier yield better results (cf. [11]). 

4.5. Unfortunately, one cannot get a "good"  n = n(k,  C, 7) so that an f as in 

4.3(i) or (ii) will exist for all n-dimensional spaces X. This is shown by the 

following argument (cf. [5]): Let X = l~, and f as in 4.3. Then each coordinate 

f~( t )=(f( t ) )~ is odd, hence E ~ = M r = 0 .  It satisfies also the same 

Lipschitz-H61der estimate, hence by 2.5, 

( 3 (  I x { t ; I f ~ ( t ) l < l , i = l  . . . . .  n } > 0  i f C < ~ m l n  ' log2-a,n " 

This cannot happen since m a x , ~ ,  ]f~ (t)] = 1 for all t E ~. Thus, for n > 10C we 

must have ~-< ( 3 C )  2/v log2aon, But ~" = Ok for some 0, hence we must have 

1 kC_2/~,) n ( k, C) > ~-~oao exp( O~ 

5. Symmetric block sequences 

5.1. The measure concentration argument in E~ was applied in [2], Theorem 

2.3 to get from a "type attaining" sequence in a normed space X an "almost 

unconditional" block sequence and then, in Theorem 2.4, the measure concen- 

tration argument in 11, was used to get an "almost symmetric" block sequence. 

This could have been done in one step using the measure concentration in the 

product space E~ k x Ilk,, improving the estimate from cn C2 p)/3p(2+p) to c~ n (l e)/e(2*p) 

(for details, see: D. Amir, Some applications of concentration phenomena, 

Longhorn Notes, The University of Texas Functional Analysis Seminar, 

1982-1983, pp. 161-178). 

5.2. There is a calculational mistake in Theorem 2.5 of [2]. We shall give a 

"more  correct" version of it here. 

TIJEOREM. Let p E (1,2), O, e ~ (0, 1). I f  (xl . . . . .  x , )  is a sequence of norm-1 

elements in a normed space x such that E(]]E7=~ e,x, II)_- > On"", then there is a 
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(1 + e )-symmetric sequence {y~ . . . . .  y,,,} of blocks with disjoint support and 

coefficients and of length 

1 ~" 3/2n 12_p)2/3p3 
m=5--  ~ 

PROOF. Let 

11 

_+1 

hence if 

for v = 1 . . . . .  N 

2ink l'-B/p < ~ - ~  , 

1 E3/2k(2_p)2/2p2 

which holds in our case (we have to check that n 2 (  k 3p, i.e., that m 3p ( n ) .  By 

Lemma 3.1, 

jk 

YJ = Z tix~(i), j = 1 . . . . .  m,  
i=(j I)k+l 

is (1 + E)-symmetric. 

(20/e)"~, (t, zr) E E~" x Ilk,, satisfying 

] q~.o(t, ~')-1]<~ e/lO 

exists provided 

e2 )2 2eft 

Then 0 < o~ </3  < 1. As in the proof of Theorem 2.5 in [2] we get a subset, which 

we may assume to be x~ . . . . .  xk,~, km = n Lze, such that 

for each of its subsets A of length I A I>= (kin)  °/~ (in particular, by our choice of 

m, k, a and /3, when IA I_- > k, provided n > no(e,p)). 

For a E R '~, (t, 7r) E E~" x IL,, define 

i=(j-I)k+l 

and then m a II! = E ( ¢ ) .  We have I11 a III --> k°/"llall ~ hence, if  ]Jl a, 111 = 1, then 
~o%(a)_-<2mk ' ~;P6. Taking an e/10-net for the II1 ]l[-sP here, a, . . . . .  aN, N -  
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REMARK. W e  also ge t  an  e s t i m a t e  on  the  c h a r a c t e r i s t i c  f u n c t i o n  A ( v ) =  

IlYT=t Y, II of  t he  ( a lmos t )  s y m m e t r i c  s e q u e n c e  (y,)~%l : A ( v ) -  -> 71(kv) alp. 
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