A QUANTITATIVE FINITE-DIMENSIONAL **KRIVINE THEOREM ***

BY

D. AMIR AND V. D. MILMAN *Department of Mathematics, Tel Aviv University, Ramat Aviv, Israel*

ABSTRACT

Measure concentration arguments are applied to get a power-type estimate for the dimension of almost l_n subspaces of isomorphs of l_n^* and for the length of almost-symmetric sequences under a nonlinear-type condition.

1. Introduction

A well-known theorem of I. L. Krivine [7] states that l_p is finitely represented in any isomorph of l_p ($1 \leq p \leq \infty$). A qualitative finite-dimensional interpretation is that, given $p \ge 1$, C, k and $\varepsilon > 0$, there is $n = n(C, k, \varepsilon, p)$ so that every *n*-dimensional space which is *C*-isomorphic to l_p^n , contains a *k*-dimensional subspace $(1 + \varepsilon)$ -isomorphic to l_p^k . A quantitative version, i.e., an estimate for $n(C, k, \varepsilon, p)$, is given in [12] in the case $1 < p < 2$, namely: $n(C, k, \varepsilon, p) \le$ $exp(\varphi_{\varepsilon,o}C^p k^{p-1})$. Pisier remarks there that a better estimate follows from the results of [2]. He also remarks that the better results known for the cases $p = 1, 2$ and ∞ suggest that the estimate in [12] is not the "right" one.

In this note we want to point out how a power-type estimate which in some sense is the best possible, holding for all $1 \leq p < \infty$, can be deduced from the results of [2], i.e. by using measure concentration phenomena.

In Section 2 we present the general facts from [2] about measure concentration in a somewhat more systematic way and with some modifications due to more recent results in this area (mainly [13]).

Section 3 deals with the finite-dimensional Krivine theorem. The application of measure concentration to the existence of $(1 + \varepsilon)$ -symmetric sequences under

^{*} Supported by the Fund for Basic Research Administered by the Israel Academy of Sciences and Humanities.

Received January 2, 1984 and in revised form September 6, 1984

a "nonlinear type condition" is discussed in Section 4. (A sequence (x_1, \ldots, x_n) in a normed space is "K-symmetric" if $\|\sum_{i=1}^n \varepsilon_i \alpha_i x_{\pi(i)}\| \le K \|\sum_{i=1}^n \alpha_i x_i\|$ for every choice of scalars $\alpha_1, \ldots, \alpha_n$, every choice of signs $\varepsilon_i = \pm 1$ and every permutation π of $\{1, \ldots, n\}$.)

Section 5 is a corrigendum of Theorem 2.5 in [2] which contained a computation mistake.

2. Normal Levy families (measure concentration phenomena)

2.1. By a *normalized metric probability space* (n.m.p.s) we mean a metric space $(0, d)$ with diameter 1, and a Borel probability measure μ on $(0, d)$. For the n.m.p.s. (Ω, d, μ) we define the *Levy function*

$$
\alpha_{\Omega}(\delta) = \sup\{1 - \mu(A_{\delta}); A \subset \Omega, \mu(A) \geq \frac{1}{2}\}, \text{ where } A_{\delta} = \{t \in \Omega; d(t, A) \leq \delta\}.
$$

We call $(\Omega_n)_{n=1}^{\infty}$ a *T*-normal Levy family if $\alpha_{\Omega_n}(\delta) \leq \alpha_0 e^{-m\delta^2}$ for some α_0 and for every $\delta > 0$, $n = 1, 2, \ldots$.

2.2. We shall list now several known normal Levy families:

(i) Levy's classical isoperimetric inequality, after normalization, yields that if S_{n-1} is the unit sphere in the *n*-dimensional Euclidean space with the normalized geodesic distance and the normalized Lebesgue measure, then $(S_{n-1})_{n=1}^{\infty}$ is a $\frac{1}{2}\pi^2$ -normal Levy family (with $\alpha_0 = 1$) (cf. [10] or [3]).

(ii) The Gromov isoperimetric inequality implies (cf. [4]) that if Ω_n is the product space $(S_{k-1})^m$ with the normalized l_2 -sum metric

$$
\boldsymbol{d}_{2}^{m}(s,t)=m^{-1/2}\left(\sum_{i=1}^{m} d_{i}(s_{i},t_{i})^{2}\right)^{1/2}
$$

and with the product measure, where $mk \ge n$, then (Ω_n) is a $\frac{1}{2}\pi^2$ -normal Levy family (again, with $\alpha_0 = 1$).

In the following discrete examples we assume that the finite space Ω carries the equidistributed probability $\mu(A) = |A| / |\Omega|$.

(iii) If $E_2^n = \{-1, 1\}^n$ has the normalized Hamming metric

$$
d(s,t)=\frac{1}{n}\left|\left\{i\,;\,s_i\neq t_i\right\}\right|,
$$

the isoperimetric inequality for this space (cf. (1.3) in [2]) yields that $(E_2^n)_{n=1}^{\infty}$ is a 2-normal Levy family (with $\alpha_0 = \frac{1}{2}$).

(iv) If Π_n is the group of permutations of $\{1, \ldots, n\}$ with the normalized Hamming metric

Vol. 50, 1985 **KRIVINE THEOREM** 3

$$
d(\pi, \pi') = \frac{1}{n} |\{i; \pi(i) \neq \pi'(i)\}|
$$

then, as shown by Maurey [9], (Π_n) is a $\frac{1}{64}$ -normal Levy family (with $\alpha_0 = 1$).

Both E_2^n and Π_n are particular cases of a class of n.m.p.s. introduced by Schechtman [13] who analyzed Maurey's proof: Denote by $\mathcal{S}(c, n)$ the class of finite metric spaces $(0, d)$ of diameter 1 such that there is a chain D^0, D^1, \ldots, D^n of decompositions of Ω , with each D^k ($k = 1, 2, ..., n$) refining D^{k-1} , $D^0 = {\Omega}$ and $D'' = \{ \{t\}; t \in \Omega \}$ are the trivial extreme decompositions, and such that whenever A_{i}^{k} , $A_{i}^{k} \in D^{k}$ are both subsets of the same $A_{m}^{k-1} \in D^{k-1}$, there is a one-to-one mapping $\psi_{i,j}^k$ of A_i^k onto A_j^k with $d(\psi_{i,j}^k, t) \leq c/n$ for every $t \in A_i^k$.

Schechtman's results mean that if $\Omega_n \in \mathcal{S}(c, n)$, $n = 1, 2, \ldots$, then $(\Omega_n)_{n=1}^{\infty}$ is 1/16c²-normal Levy family (with $\alpha_0 = 1$). Other examples of this class are:

(v) $\Omega = E_2^{hm} = \prod_{h=1}^{m}$ with the normalized Hamming metric

$$
d((\varepsilon,\pi),(\varepsilon',\pi'))=\frac{1}{hm}\big|\{(i,j);1\leq i\leq m,1\leq j\leq h,(\varepsilon_i(j),\pi_i(j))\neq(\varepsilon'_i(j),\pi'_i(j))\}\big|
$$

is in $\mathcal{S}(2, hm)$. Indeed, taking D^k to be the decompositions into the sets determined by the first $k = (i - 1)h + j$ $(1 \le i \le m, 1 \le j \le h)$ coordinates, if A_s^k , $A_t^k \in D^k$ have the same first $k-1$ coordinates, we take $\varphi : A_s^k \to A_t^k$ which replaces $\varepsilon_i(j) = \varepsilon_i^{(s)}(j)$ by $\varepsilon_i^{(i)}(j)$ and interchanges $\pi_i(j) = \pi_i^{(s)}(j)$ with $\pi_i^{(i)}(j)$, the change affecting at most two coordinates.

Thus, if $h_n m_n \geq n$ and $\Omega_n = E_2^{h_n m_n} \times \prod_{k=1}^{m_n}$, then $(\Omega_n)_{n=1}^{\infty}$ is a $\frac{1}{64}$ -normal Levy family.

(vi) C_m^n , the space of all (unordered) *m*-tuples from $\{1, \ldots, n\}$ with the normalized Hamming metric, is also in $\mathcal{S}(2, n)$. Once again, D^k is the decomposition determined by the first k coordinates. If A_i^k has 0 at the k-th coordinate and A_j^k has 1, then φ_{kj}^k puts 1 at the k-th coordinate and replaces the first nonzero coordinate after the k-th by a zero. Thus, $(C_m^{\{n\}})_{n=1}^{\infty}$ is a $\frac{1}{64}$ -normal Levy family.

(vii) The same martingale argument as in [13] shows that if (Ω, d, μ) is any n.m.p.s., then the product spaces Ω ⁿ with the *l*₁-sum metric

$$
d_n^1(s,t) = \frac{1}{n} \sum_{i=1}^n d(s_i, t_i)
$$

and the product measure μ^{n} , form a $\frac{1}{16}$ -normal Levy family. Indeed, letting F_{k} $(k = 0, \ldots, n)$ be the field generated by the first k coordinates, we get for every $f: \Omega^n \to R$ satisfying $|f(s)-f(t)| \leq d_n^{\perp}(s, t)$,

$$
|\mathbf{E}(f | F_k) - \mathbf{E}(f | F_{k-1})| \leq \frac{1}{n}
$$
 hence $\mu^n \{|f - \mathbf{E}f| \geq \delta\} \leq 2 \exp(-\delta^2 n/4)$ etc.

2.3. The Levy-function estimates enable us to show concentration in measure of functions: If $\alpha_{\Omega}(\delta) \leq \alpha_0 e^{-r \delta^2}$ and $f: \Omega \to \mathbb{R}$ has modulus of continuity $\omega_f(\delta)$, consider a *Levy mean* (median) M_t of f, i.e., such that $\mu \{t; f(t) \leq M_t\} \geq \frac{1}{2}$ and $\mu\{t; f(t) \geq M_t\} \geq \frac{1}{2}$. Then

$$
\mu\{t\,;\,|f(t)-M_f|\leq \omega_f(\delta)\}\geq 1-2\alpha_\Omega(\delta).
$$

Thus, given N such functions f_1, \ldots, f_N , we have for every $\delta > 0$

$$
\mu({t \in \Omega}; |f_i(t) - M_{f_i}| \leq \omega_{f_i}(\delta), i = 1, ..., N}) \geq 1 - 2N\alpha_{\Omega}(\delta).
$$

2.4. The Levy mean is close to the average $E f = \int_{\Omega} f(t) d\mu$: For every $\delta > 0$ we have

$$
|M_f - \mathbf{E} f| \leq \omega_f(\delta) + 2\omega_f(1)\alpha_\Omega(\delta)
$$

([21, p. 9).

2.5. Let $F = \{f_i\}_{i=1}^N$ be a family of N functions on (Ω, d, μ) . In the further applications it is crucially important to find at least one $t_0 \in \Omega$ (the same for all the family $\{f_i\}_{i=1}^N$ such that every $f_i(t_0)$ is close enough to its average \mathbf{E}_{f_i} . Of course, some conditions should be imposed on the continuity of the f_i , e.g. Hölder-continuity. Combining 2.3 and 2.4 leads to such a result.

PROPOSITION. *If* (Ω, d, Ω) *is an n.m.p.s. with* $\alpha_{\Omega}(\delta) \leq \alpha_0 e^{-r\delta^2}$ *and* $f_i : \Omega \to \mathbf{R}$, $i = 1, ..., N$ satisfy $|f_i(s) - f_i(t)| \leq C d(s, t)$ *(for* $i = 1, ..., N$ *and all s, t* $\in \Omega$), *then a sufficient condition for the existence of* $t \in \Omega$ *with* $|f_i(t)-Ef_i| < \varepsilon$ *for* $i = 1, \ldots, N$ is

$$
C < \frac{\varepsilon}{3} \min \left(\frac{1}{3} N, \left(\frac{\tau}{\log 2 \alpha_0 N} \right)^{\gamma/2} \right).
$$

PROOF. If

$$
\delta > \left(\frac{\log 2\alpha_0 N}{\tau}\right)^{1/2}
$$

yet $C\delta^{\gamma} < \varepsilon/3$, then by 2.3

$$
\mu\left(\left\{t\in\Omega;|f_i(t)-M_{f_i}|<\frac{\varepsilon}{3}\,,\,i=1,\ldots,N\right\}\right)>1-2N\alpha_0e^{-\tau\delta^2}>0,
$$

while by 2.4,

$$
|M_{f_i}-\mathbf{E}_{f_i}|<\frac{\varepsilon}{3}+2C\alpha_0e^{-\tau\delta^2}<\tfrac{2}{3}\varepsilon.
$$

3. The finite-dimensional Krivine theorem

Applying the results of Section 2 to normed linear spaces, we shall use the following two simple lemmas:

3.1. LEMMA. If $\|\cdot\|$, $\|\|\cdot\|$ are two norms on a linear space so that $\| \|x\| - \|x\| \| \leq \varepsilon/10$ for all x in an $\varepsilon/10$ -net of the $\| \cdot \|$ -unit sphere, then $\|$ and $\|\cdot\|$ *are* $(1 + \varepsilon)$ -isomorphic.

(For the straightforward proof cf., e.g., the proof of Theorem 2 in [2].)

3.2. LEMMA. For every norm on \mathbb{R}^m and every $\varepsilon > 0$, there is an ε -net x_1, \ldots, x_N for the unit sphere with $N < (1 + 2/\varepsilon)^m$ ([3], Lemma 2.5).

3.3. The following finite-dimensional version of Krivine's construction of almost l_p^N subspaces from symmetric sequences is given in [2] (Theorem 3.1).

THEOREM. *If* (y_1, \ldots, y_n) *is a symmetric finite sequence in a normed space* X *satisfying*

$$
(\ast) \qquad \qquad C_1^{-1}\left(\sum_{i=1}^n|\alpha_i|^p\right)^{1/p}\leq \left\|\sum_{i=1}^n\alpha_iy_i\right\|\leq C_2\left(\sum_{i=1}^n|\alpha_i|^p\right)^{1/p}
$$

for every $\alpha_1, \ldots, \alpha_n$, then for every $\epsilon > 0$ there is a block sequence (u_1, \ldots, u_k) with *respect to* (y_1, \ldots, y_n) *with*

$$
(**) (1-\varepsilon)\left(\sum_{j=1}^k |\alpha_j|^p\right)^{1/p} \leq \left\|\sum_{j=1}^k \alpha_j u_j\right\| \leq (1+\varepsilon)\left(\sum_{j=1}^k |\alpha_j|^p\right)^{1/p} \text{ for every } \alpha_1,\ldots,\alpha_k,
$$

where

$$
k \ge \Gamma^{3p} n^{\Gamma}, \qquad \Gamma = \left(\frac{\varepsilon}{36 C_1 C_2}\right)^p.
$$

(In fact, the u_i are equally distributed and are constructed as a "geometric series" -- a normalization of a disjoint sum of h bumps of length $((a + 1)/a)$ ^{*i*} and height $((a + 1)/a)^{(h-j)/p}$, where a, h are specially chosen integers.)

3.4. By 3.3, our task in the quantitative Krivine theorem reduces to getting "good" symmetric sequences in isomorphs of l_p .

THEOREM. If the sequence (x_1, \ldots, x_n) in a normed space satisfies $(*)$ above *then, for every* $\varepsilon > 0$ *, it has a block sequence* (y_1, \ldots, y_k) *satisfying* $(**)$ *, where*

$$
k \sim \kappa(\varepsilon, C_1 C_2, p) n^{\Gamma/3}, \qquad \Gamma = \left(\frac{\varepsilon}{36 C_1 C_2}\right)^p
$$

and the function κ is easily computed from the estimate on m below and Theorem 3.3.

PROOF. Partition (x_1, \ldots, x_n) into m subsequences of h elements each, $(x_{1,1}, x_{1,2}, \ldots, x_{1,h}), (x_{2,1}, \ldots, x_{2,h}), \ldots, (x_{m,1}, \ldots, x_{m,h})$ and define, for $a \in \mathbb{R}^m$, $t \in$ $(E_2^m)^h$, $\pi \in (\Pi_m)^h$:

$$
\varphi_a(t,\boldsymbol{\pi})=\bigg\|\sum_{i=1}^h\sum_{j=1}^m t_i(j)a_{\pi_i(j)}x_{i,j}\bigg\|.
$$

Let $\|\mathbf{a}\| = \mathbf{E}(\varphi_a)$ (over $E_2^{mk} \times \Pi_m^k$). Then

$$
\|a\| \geq \frac{1}{C_1} h^{1/p} \|a\|_p,
$$

so that if $||\mathbf{a}|| = 1$ then $||\mathbf{a}||_{\infty} \le ||\mathbf{a}||_{p} \le C_1 h^{-1/p}$ and therefore

$$
\omega_{\varphi_{\alpha}}(\delta) = \sup \left\{ \left\| \sum_{i=1}^{h} \sum_{j=1}^{m} t_{i}(j) a_{\pi_{i}(j)} x_{i,j} - t'_{i}(j) a_{\pi_{i}(j)} x_{i,j} \right\| ;
$$
\n
$$
(t_{i}(j), \pi_{i}(j)) \neq (t'_{i}(j), \pi'_{i}(j)) \text{ at most } h m \delta \text{ times} \right\}
$$
\n
$$
\leq 2 \sup \left\{ \left\| \sum_{\nu=1}^{h m \delta} \alpha_{i_{\nu}} x_{i_{\nu}} \right\| ; \max_{\nu} |\alpha_{i_{\nu}}| \leq C_{1} h^{-1/p} \right\}
$$
\n
$$
\leq 2 C_{2} \sup \left\{ \left(\sum_{\nu=1}^{h m \delta} |\alpha_{i_{\nu}}|^{p} \right)^{1/p} ; \max_{\nu} |\alpha_{i_{\nu}}| \leq C_{1} h^{-1/p} \right\}
$$
\n
$$
= 2 C_{1} C_{2} (m \delta)^{1/p}.
$$

Let a_{ν} , $\nu = 1, ..., N$, $N = \frac{1}{2}(25/\varepsilon)^m$ be an $\varepsilon/10$ -net for the $\|\cdot\|$ -unit sphere. To find $(t, \pi) \in E_2^{m h} \times \prod_m^h$ with $|\varphi_{a_\nu}(t, \pi) - 1| \leq \varepsilon/10$ for all ν it suffices, by 2.5 and $2.2(v)$, that

$$
2C_1C_2m^{1/p} < \frac{\varepsilon}{30} \min\left(\frac{1}{6}\left(\frac{25}{\varepsilon}\right)^m, \left(\frac{hm}{64m\log\frac{25}{\varepsilon}}\right)^{1/2p}\right)
$$

(since in our case $\alpha_0 = 1$ and $\tau = \frac{hm}{64}$), hence that

$$
m^{1/p} < \frac{\varepsilon}{60C_1C_2} \min\left(\frac{1}{6}\left(\frac{25}{\varepsilon}\right)^m, \left(\frac{\varepsilon h}{1600}\right)^{1/2p}\right),
$$

and this is satisfied if, e.g.,

$$
m = \frac{1}{12} \varepsilon^{(2p+1)/3} (60 C_1 C_2)^{-2p/3} n^{1/3}
$$

(and $25^m > 360C_1C_2m$). Since $|||\cdot|||$ is symmetric, $z_{\nu} = \sum_{i=1}^{h} t_i (\pi_i^{-1} \nu) x_{i, \pi_i^{-1}(\nu)}$ $\nu = 1, \ldots, m$ is $(1 + \varepsilon)$ -symmetric by Lemma 3.1.

Applying Theorem 3.3 (after $(1 + \varepsilon)$ -change of the norm) we get y_1, \ldots, y_k satisfying $(**)$.

3.5. This result is "almost" exact in the following sense: we cannot get here a power $k = n^{\alpha}$ with α not dependent on ε or on $C = C_1 C_2$.

EXAMPLE. Let $p_n \leq q_n \leq 2$ satisfy

$$
\frac{1}{p_n} - \frac{1}{q_n} = \frac{\log C}{\log n} .
$$

Then by [6] we know that $d(l_{p_n}^n, l_{q_n}^n) = C$. If E is *any* n^{α} -dimensional subspace of $l_{q_n}^n$ then, by a result of Lewis [8],

$$
d(E, l_2^{n^{\alpha}}) \leq n^{\alpha(q_n^{-1}-1/2)},
$$

while, by [6],

$$
d(I_{p_n}^{n^{\alpha}}, I_2^{n^{\alpha}}) = n^{\alpha(p_n^{-1} - 1/2)}.
$$

Hence

$$
d(E, l_{p_n}^{n^{\alpha}}) \geq n^{\alpha(p_n^{-1}-q_n^{-1})} = C^{\alpha},
$$

and if we want it to be $\leq 1+\varepsilon < e^{\varepsilon}$, we must have $\alpha < \varepsilon / \log C$ (similar reasoning was used in [1]).

4. Symmetric sets in the range

4.1. Another application of measure concentration is to find large "almost symmetric" sets in the range of Lipschitz-Hölder functions on an n.m.p.s. $(0, d, \mu)$. By 2.2 (vii), the powers $({\Omega}^n)_{n=1}^{\infty}$ form a $\frac{1}{16}$ -normal Levy family in the l_1 -sum metric d_1^n . It may happen that $({\Omega}^n)_{n=1}^\infty$ is a normal Levy family even in the weaker *l*_r-sum metric,

$$
\boldsymbol{d}_{i}^{n}(s,t)=m^{-1/r}\left(\sum_{i=1}^{m} d_{i}(s_{i},t_{i})^{r}\right)^{1/r}
$$

for some $r \ge 1$ (as in the case 2.2(ii) of $\Omega = S_{m-1}$, where $r = 2$). In fact the most natural applications of the following proposition are to the cases $\Omega = E_{2}^{m}$, $r = 1$ and $\Omega = S_{m-1}$, $r = 2$; see 4.3(i) and (ii).

4.2. PROPOSITION. Let (Ω, d, μ) be a compact n.m.p.s. with a measure*preserving isometric fixed-point free involution* $t \rightarrow -t$ *and such that, for some* $r \ge 1$ and τ , $(\Omega^m)_{m=1}^{\infty}$ *is a* τ *-normal Levy family with the l_r-sum metric and the product measure* μ^m *. Let* $f : \Omega \to X$ *be a non-0 odd function (i.e., with* $f(-t) =$ *-f(t))* satisfying $||f(s) - f(t)|| \leq C d(s, t)$ ^{*v*} for some $0 < \gamma \leq 1$, and let C_q $(2 \leq q \leq$ ∞) be the q-Rademacher cotype constant of the normed linear space X ($C_q =$ $\sup(\sum_{i=1}^n ||x_i||^q)^{1/q}$; $x_i \in X$, $(E(||\sum_{i=1}^n \varepsilon_i x_i||^q)^{1/q} \le 1)$ if $2 \le q < \infty$, $C_{\infty} = 1$). Then, for every $\varepsilon > 0$, a $(1 + \varepsilon)$ -symmetric m-tuple exists in the range of f, where

$$
m = \left(\frac{\varepsilon \mathbf{E}(\|f\|)}{30CC_q} \left(\frac{\varepsilon \tau}{20}\right)^{\gamma/2}\right)^{\min(q/(q-1),r/\gamma)}
$$

PROOF (a modification of the proof of Theorem 2.2 in [2]). Since Ω is compact, we can specify a "positive half" Ω^+ of Ω so that $\mu(\Omega^*) = \frac{1}{2}$ and $\Omega^+ \cap (-\Omega^+) = \emptyset$. For every $a \in \mathbb{R}^m$ define the function $\varphi_a(t) = ||\sum_{j=1}^m a_j f(t_j)||$ on Ω^m , and then define on \mathbb{R}^m :

$$
\|\mathbf{a}\| = \mathbf{E}(\varphi_a) = \int_{\Omega} \cdots \int_{\Omega} \left\|\sum_{j=1}^m a_j f(t_j)\right\| d\mu(t_1) \cdots d\mu(t_m).
$$

 $\|\cdot\|$ is clearly a semi-norm on **R**^m. It is symmetric, since if $\varepsilon \in E_2^m$ and $\pi \in \Pi_m$ then

$$
\|\|\boldsymbol{(\varepsilon,\pi)}(\boldsymbol{a})\|\| = \int_{\Omega} \cdots \int_{\Omega} \left\|\sum_{j=1}^{m} \varepsilon_{j} a_{\pi(j)} f(t_{j})\right\| d\mu(t_{1}) \cdots d\mu(t_{m})
$$

$$
= \int_{\Omega} \cdots \int_{\Omega} \left\|\sum_{j=1}^{m} a_{j} f(\varepsilon_{\pi^{-1}j} t_{\pi^{-1}j})\right\| d\mu(t_{1}) \cdots d\mu(t_{m})
$$

$$
= \int_{\Omega} \cdots \int_{\Omega} \left\|\sum_{j=1}^{m} a_{j} f(s_{j})\right\| d\mu(s_{1}) \cdots d\mu(s_{m})
$$

$$
= \|\boldsymbol{a}\|.
$$

Since $\|\cdot\|$ is unconditional,

$$
\parallel a \parallel \parallel \geq \max_{j} \parallel a_{j} e_{j} \parallel \parallel = \max_{j} |a_{j}| \mathbf{E}(\parallel f \parallel),
$$

and $\|\cdot\|$ is a norm. We also have, for every $1 \leq q < \infty$,

$$
\|\mathbf{a}\| = \int_{\Omega^+} \cdots \int_{\Omega^+} \sum_{\varepsilon \in E_j^n} \left\| \sum_{j=1}^m \varepsilon_i a_j f(t_j) \right\| d\mu(t_1) \cdots d\mu(t_m)
$$

\n
$$
\geq \frac{2^m}{C_q} \int_{\Omega^+} \cdots \int_{\Omega^+} \left(\sum_{j=1}^m |a_j|^q \|f(t_j)\|^q \right)^{1/q} d\mu(t_1) \cdots d\mu(t_m)
$$

\n
$$
= \frac{1}{C_q} \int_{\Omega} \cdots \int_{\Omega} \left(\sum_{j=1}^m |a_j|^q \|f(t_j)\|^q \right)^{1/q} d\mu(t_1) \cdots d\mu(t_m)
$$

\n
$$
\geq \frac{1}{C_q} \|\mathbf{a}\|_q \mathbf{E}(\|f\|).
$$

Therefore, if $|| ||a|| = 1$ then $||a||_q \leq C_q / \mathbb{E}(\Vert f \Vert)$ and, for every s, $t \in \Omega^m$, we have

$$
|\varphi_{a}(s) - \varphi_{a}(t)| \leq \sum_{j=1}^{m} |a_{j}| \|f(s_{j}) - f(t_{j})\|
$$

\n
$$
\leq ||a||_{q} \left(\sum_{j=1}^{m} ||f(s_{j}) - f(t_{j})||^{q/(q-1)} \right)^{(q-1)/q}
$$

\n
$$
\leq \frac{CC_{q}}{\mathbf{E}(||f||)} \left(\sum_{j=1}^{m} d(s_{j}, t_{j})^{\gamma q/(q-1)} \right)^{(q-1)/q}.
$$

Since $\sum_{j=1}^m d_j^{\alpha}$ ($0 < \alpha \leq 2$) constrained by $d_i \geq 0$, $\sum_{j=1}^m d_j^{\prime} = m\delta'$ ($r \geq 1$) attains its maximum when $d_i = \delta$ $(j = 1, ..., m)$ if $\alpha \leq r$, and when $d_i = m^{1/r} \delta$, $d_i = 0$ $(j = 2, \ldots, m)$ if $\alpha \geq r$, we get the estimates:

$$
\omega_{\varphi_a}(\delta) \leq \frac{CC_q}{\mathbf{E}(\|f\|)} m^{(q-1)/q} \delta^{\gamma} \quad \text{if } \frac{\gamma q}{q-1} \leq r,
$$

$$
\omega_{\varphi_a}(\delta) \leq \frac{CC_q}{\mathbf{E}(\|f\|)} m^{\gamma/r} \delta^{\gamma} \quad \text{if } \frac{\gamma q}{q-1} \geq r
$$

(for $q = \infty$ we simply have

$$
\omega_{\varphi_a}(\delta) \leq \frac{Cm}{\mathbf{E}(\|f\|)} \delta^{\gamma} \bigg) .
$$

Take an $\varepsilon/10$ -net for the $\|\cdot\|$ -unit sphere, $(a_{\nu})_{\nu=1}^{N}$, with $2N \sim (30/\varepsilon)^{m}$. Since $E(\varphi_{a_{\nu}}) = || \mathbf{a} || = 1$, we can apply 2.5 to get $t \in \Omega^m$ so that $|\varphi_{a_{\nu}}(t) - 1| \leq \varepsilon/10$ for all $\nu = 1, \ldots, N$, provided that

$$
\frac{CC_q}{\mathbf{E}(\|f\|)} m^{\max((q-1)/q,\gamma/r)} < \frac{\varepsilon}{30} \left(\frac{\varepsilon\tau}{30}\right)^{\gamma/2} \quad (\text{and } m > \log 2\alpha_0\tau).
$$

4.3. (i) In the special case $f: S_{k-1} \to S(X)$ (the unit sphere of X) in which $r = 2$, $\tau = \pi^2 k/2$, Proposition 4.1 yields a $(1 + \varepsilon)$ -symmetric sequence of length $\theta \varepsilon^{3} (CC_{q})^{(1-q)/q} k^{\gamma q/2(q-1)}$ ([2], Theorem 2.2).

(ii) A similar estimate is obtained for $f : E_2^k \to S(X)$. This time $r = 1$, $\tau = 2k$, hence we get a $(1 + \varepsilon)$ -symmetric sequence of length $\theta \varepsilon^3 (CC_q)^{-2} k^{min(1/2, \gamma q/2(q-1))}$.

4:4. COROLLARY. *If* (x_1, \ldots, x_k) is a sequence in the unit ball of the normed *linear space X such that* $E(\|\Sigma_{i=1}^k \varepsilon_i x_i\|) \geq \theta k^{1/p}$ for some $1 \leq p < 2$, then there are *m choices of signs* $\varepsilon^{i} \in E_{2}^{m}$ *so that the sequence* $y_{i} = \sum_{i=1}^{k} \varepsilon_{i}^{i} x_{i}$, $j = 1, ..., m$ is $(1 + \varepsilon)$ -symmetric where $m = ck^{1/p-1/2}$, $c = \varepsilon^{3/2}\theta/200$.

PROOF. Consider $f: E_{2}^{k} \rightarrow X$ defined by $f(t) = \sum_{i=1}^{k} t_{i}x_{i}$. By the triangle in-

equality, $||f(s)-f(t)|| \leq 2kd(s, t)$. By Proposition 4.2 with $q = \infty$, $C_q = 1$, we can take

$$
m = \frac{\varepsilon \theta k^{1/p}}{30 \cdot 2k} \left(\frac{\varepsilon k}{10}\right)^{1/2} = \varepsilon^{3/2} \frac{\theta k^{1/p - 1/2}}{60\sqrt{10}}.
$$

This result which we have for a "linear type" sequence by a "nonlinear" general approach is not the best possible. In this case the methods of Johnson and Schechtman and Pisier yield better results (cf. [11]).

4.5. Unfortunately, one cannot get a "good" $n = n(k, C, \gamma)$ so that an f as in 4.3(i) or (ii) will exist for all *n*-dimensional spaces X . This is shown by the following argument (cf. [5]): Let $X = l^*_{\infty}$, and f as in 4.3. Then each coordinate $f_i(t) = (f(t))_i$ is odd, hence $\mathbf{E}f_i = M_f = 0$. It satisfies also the same Lipschitz-Hölder estimate, hence by 2.5,

$$
\mu\{t\,;|f_i(t)|<1,\,i=1,\ldots,n\}>0\qquad\text{if }C<\tfrac{1}{3}\min\left(\frac{n}{3},\left(\frac{\tau}{\log 2\alpha_0 n}\right)^{\gamma/2}\right).
$$

This cannot happen since max $_{1 \le i \le n} |f_i(t)| = 1$ for all $t \in \Omega$. Thus, for $n > 10C$ we must have $\tau < (3C)^{2/\gamma} \log 2\alpha_0 n$. But $\tau = \theta k$ for some θ , hence we must have

$$
n(k, C) > \frac{1}{2\alpha_0} \exp(\theta_1 k C^{-2/\gamma}).
$$

5. Symmetric block sequences

5.1. The measure concentration argument in E_2^* was applied in [2], Theorem 2.3 to get from a "type attaining" sequence in a normed space X an "almost" unconditional" block sequence and then, in Theorem 2.4, the measure concentration argument in Π_n was used to get an "almost symmetric" block sequence. This could have been done in one step using the measure concentration in the product space $E_2^{nk} \times \prod_{n=1}^k$, improving the estimate from $cn^{(2-p)/3p(2+p)}$ to $c_1n^{(1-p)/p(2+p)}$ (for details, see: D. Amir, *Some applications of concentration phenomena,* Longhorn Notes, The University of Texas Functional Analysis Seminar, 1982-1983, pp. 161-178).

5.2. There is a calculational mistake in Theorem 2.5 of [2]. We shall give a "more correct" version of it here.

THEOREM. Let $p \in (1,2)$, θ , $\varepsilon \in (0,1)$. If (x_1, \ldots, x_n) is a sequence of norm-1 *elements in a normed space x such that* $\mathbf{E}(\|\sum_{i=1}^n \varepsilon_i x_i\|) \ge \theta n^{1/p}$, then there is a

 $(1 + \varepsilon)$ -symmetric sequence $\{y_1, \ldots, y_m\}$ of blocks with disjoint support and ± 1 *coefficients and of length*

$$
m=\frac{1}{500} \; \epsilon^{3/2} n^{(2-p)^2/3p^3}.
$$

PROOF. Let

$$
\beta = \frac{p}{2} + \frac{(2-p)^2}{2p}, \qquad \alpha = \frac{2p\beta}{2\beta + p}
$$

Then $0 < \alpha < \beta < 1$. As in the proof of Theorem 2.5 in [2] we get a subset, which we may assume to be x_1, \ldots, x_{km} , $km = n^{1/p}$, such that

$$
\mathbf{E}\left(\left\|\sum_{x_v\in A}\varepsilon_v x_v\right\|\right)\geq |A|^{\beta/p}
$$

for each of its subsets A of length $|A| \geq (km)^{\alpha/\beta}$ (in particular, by our choice of *m*, *k*, α and β , when $|A| \geq k$, provided $n > n_0(\varepsilon, p)$).

For $a \in \mathbb{R}^m$, $(t, \pi) \in E_2^{km} \times \Pi_{km}$ define

$$
\varphi_a(t, \pi) = \left\| \sum_{j=1}^m a_j \sum_{i=(j-1)k+1}^{jk} t_i x_{\pi(i)} \right\|,
$$

 $(20/\varepsilon)^m$, $(t, \pi) \in E_2^{km} \times \Pi_{km}$ satisfying and then $\| \mathbf{a} \| = \mathbf{E}(\varphi_a)$. We have $\| \mathbf{a} \| \geq k^{\beta/p} \| \mathbf{a} \|_{\infty}$ hence, if $\| \mathbf{a}_n \| = 1$, then $\omega_{\varphi_{a}}(\delta) \leq 2mk^{1-\beta/\rho}\delta$. Taking an $\varepsilon/10$ -net for the $\|\cdot\|$ -sphere, a_1, \ldots, a_N , $N \sim$

$$
|\varphi_{a_{\nu}}(t,\boldsymbol{\pi})-1| \leq \varepsilon/10 \quad \text{for } \nu=1,\ldots,N
$$

exists provided

$$
2mk^{1-\beta/p} < \frac{\varepsilon}{30} \left(\frac{k\varepsilon}{64}\right)^{1/2},
$$

hence if

$$
m < \frac{1}{480} \varepsilon^{3/2} k^{(2-p)^2/2p^2},
$$

which holds in our case (we have to check that $n^2 < k^{3p}$, i.e., that $m^{3p} < n$). By Lemma 3.1,

$$
y_j = \sum_{i=(j-1)k+1}^{jk} t_i x_{\pi(i)}, \qquad j=1,\ldots,m,
$$

is $(1 + \varepsilon)$ -symmetric.

REMARK. We also get an estimate on the characteristic function $\lambda(\nu)$ = $\|\sum_{i=1}^{\nu} y_i\|$ of the (almost) symmetric sequence $(y_i)_{i=1}^m$: $\lambda(\nu) \geq \eta (k\nu)^{\beta/\rho}$.

REFERENCES

1. N. Alon and V. D. Milman, *Embedding of l~ in finite dimensional Banach spaces,* Isr. J. Math. 45 (1983), 265-280.

2. D. Amir and V. D. Milman, *Unconditional and symmetric sets in n-dimensional normed spaces,* Isr. J. Math. 37 (1980), 3-20.

3. T. Figiel, J. Lindenstrauss and V. D. Milman, *The dimensions of almost spherical sections of convex bodies,* Acta Math. 139 (1977), 53-94.

4. M. Gromov and V. D. Milman, *A topological application of the isoperimetric inequality,* Am. J. Math. 105 (1983), 843-854.

5. M. Gromov and V. D. Milman, *Brunn theorem and a concentration of volume phenomena for symmetric convex bodies,* Geometrical Aspects of Functional Analysis, Seminar Notes, Tel Aviv, 1983-4.

6. V. I. Gurari, M. I. Kadec and V. I. Macaev, *On Banach-Mazur distance between certain Minkowski spaces,* Bull. Acad. Polon. Sci. 13 (1965), 719-722.

7. J. L. Krivine, *Sous espaces de dimension finis des espaces de Banach reticulds,* Ann. of Math. 104 (1976), 1-29.

8. D. R. Lewis, *Finite dimensional subspaces of L_p*, Studia Math. 63 (1978), 207-212.

9. B. Maurey, *Construction de suites symétriques*, Comptes Rendus Acad. Sci. Paris. 288 (1979), A679-681.

10. V. D. Milman, *A new proof of the theorem of A. Dvoretzky on sections of convex bodies,* Funct. Anal. Appl. 5 (1971), 28-37 (transl. from Russian).

11. V. D. Milman and G. Schechtman, *Asymptotic Theory of Finite Dimensional Banach Spaces,* Springer Lecture Notes, to appear.

12. G. Pisier, *On the dimension of the* l_{n}^{*} *-subspaces of Banach spaces, for* $1 \leq p < 2$, Trans. Am. Math. Soc. 276 (1983), 201-211.

13. G. Schechtman, *Levy type inequality for a class of finite metric spaces,* in *Martingale Theory in Harmonic Analysis and Applications,* Cleveland 1981, Springer Lecture Notes in Math. No. 939, 1982, pp. 211-215.