A QUANTITATIVE FINITE-DIMENSIONAL KRIVINE THEOREM[†]

ΒY

D. AMIR AND V. D. MILMAN Department of Mathematics, Tel Aviv University, Ramat Aviv, Israel

ABSTRACT

Measure concentration arguments are applied to get a power-type estimate for the dimension of almost l_p subspaces of isomorphs of l_p^n and for the length of almost-symmetric sequences under a nonlinear-type condition.

1. Introduction

A well-known theorem of I. L. Krivine [7] states that l_p is finitely represented in any isomorph of l_p $(1 \le p \le \infty)$. A qualitative finite-dimensional interpretation is that, given $p \ge 1$, C, k and $\varepsilon > 0$, there is $n = n(C, k, \varepsilon, p)$ so that every *n*-dimensional space which is C-isomorphic to l_p^n , contains a k-dimensional subspace $(1 + \varepsilon)$ -isomorphic to l_p^k . A quantitative version, i.e., an estimate for $n(C, k, \varepsilon, p)$, is given in [12] in the case $1 , namely: <math>n(C, k, \varepsilon, p) \le$ $\exp(\varphi_{\varepsilon,p}C^pk^{p-1})$. Pisier remarks there that a better estimate follows from the results of [2]. He also remarks that the better results known for the cases p = 1, 2and ∞ suggest that the estimate in [12] is not the "right" one.

In this note we want to point out how a power-type estimate which in some sense is the best possible, holding for all $1 \le p < \infty$, can be deduced from the results of [2], i.e. by using measure concentration phenomena.

In Section 2 we present the general facts from [2] about measure concentration in a somewhat more systematic way and with some modifications due to more recent results in this area (mainly [13]).

Section 3 deals with the finite-dimensional Krivine theorem. The application of measure concentration to the existence of $(1 + \varepsilon)$ -symmetric sequences under

⁺ Supported by the Fund for Basic Research Administered by the Israel Academy of Sciences and Humanities.

Received January 2, 1984 and in revised form September 6, 1984

a "nonlinear type condition" is discussed in Section 4. (A sequence (x_1, \ldots, x_n) in a normed space is "*K*-symmetric" if $\|\sum_{i=1}^n \varepsilon_i \alpha_i x_{\pi(i)}\| \leq K \|\sum_{i=1}^n \alpha_i x_i\|$ for every choice of scalars $\alpha_1, \ldots, \alpha_n$, every choice of signs $\varepsilon_i = \pm 1$ and every permutation π of $\{1, \ldots, n\}$.)

Section 5 is a corrigendum of Theorem 2.5 in [2] which contained a computation mistake.

2. Normal Levy families (measure concentration phenomena)

2.1. By a normalized metric probability space (n.m.p.s) we mean a metric space (Ω, d) with diameter 1, and a Borel probability measure μ on (Ω, d) . For the n.m.p.s. (Ω, d, μ) we define the Levy function

$$\alpha_{\Omega}(\delta) = \sup\{1 - \mu(A_{\delta}); A \subset \Omega, \, \mu(A) \ge \frac{1}{2}\}, \text{ where } A_{\delta} = \{t \in \Omega; \, d(t, A) \le \delta\}.$$

We call $(\Omega_n)_{n=1}^{\infty}$ a τ -normal Levy family if $\alpha_{\Omega_n}(\delta) \leq \alpha_0 e^{-\tau n \delta^2}$ for some α_0 and for every $\delta > 0$, n = 1, 2, ...

2.2. We shall list now several known normal Levy families:

(i) Levy's classical isoperimetric inequality, after normalization, yields that if S_{n-1} is the unit sphere in the *n*-dimensional Euclidean space with the normalized geodesic distance and the normalized Lebesgue measure, then $(S_{n-1})_{n=1}^{\infty}$ is a $\frac{1}{2}\pi^2$ -normal Levy family (with $\alpha_0 = 1$) (cf. [10] or [3]).

(ii) The Gromov isoperimetric inequality implies (cf. [4]) that if Ω_n is the product space $(S_{k-1})^m$ with the normalized l_2 -sum metric

$$d_2^m(s,t) = m^{-1/2} \left(\sum_{i=1}^m d_i(s_i,t_i)^2\right)^{1/2}$$

and with the product measure, where $mk \ge n$, then (Ω_n) is a $\frac{1}{2}\pi^2$ -normal Levy family (again, with $\alpha_0 = 1$).

In the following discrete examples we assume that the finite space Ω carries the equidistributed probability $\mu(A) = |A|/|\Omega|$.

(iii) If $E_2^n = \{-1, 1\}^n$ has the normalized Hamming metric

$$d(s,t)=\frac{1}{n}|\{i;s_i\neq t_i\}|,$$

the isoperimetric inequality for this space (cf. (1.3) in [2]) yields that $(E_2^n)_{n=1}^{\infty}$ is a 2-normal Levy family (with $\alpha_0 = \frac{1}{2}$).

(iv) If Π_n is the group of permutations of $\{1, \ldots, n\}$ with the normalized Hamming metric

Vol. 50, 1985

KRIVINE THEOREM

$$d(\pi, \pi') = \frac{1}{n} |\{i; \pi(i) \neq \pi'(i)\}|$$

then, as shown by Maurey [9], (Π_n) is a $\frac{1}{64}$ -normal Levy family (with $\alpha_0 = 1$).

Both E_2^n and Π_n are particular cases of a class of n.m.p.s. introduced by Schechtman [13] who analyzed Maurey's proof: Denote by $\mathscr{S}(c, n)$ the class of finite metric spaces (Ω, d) of diameter 1 such that there is a chain D^0, D^1, \ldots, D^n of decompositions of Ω , with each D^k $(k = 1, 2, \ldots, n)$ refining $D^{k-1}, D^0 = \{\Omega\}$ and $D^n = \{\{t\}; t \in \Omega\}$ are the trivial extreme decompositions, and such that whenever $A_i^k, A_j^k \in D^k$ are both subsets of the same $A_m^{k-1} \in D^{k-1}$, there is a one-to-one mapping $\psi_{i,i}^k$ of A_i^k onto A_i^k with $d(\psi_{i,i}^k, t) \leq c/n$ for every $t \in A_i^k$.

Schechtman's results mean that if $\Omega_n \in \mathscr{S}(c, n)$, n = 1, 2, ..., then $(\Omega_n)_{n=1}^{\infty}$ is $1/16c^2$ -normal Levy family (with $\alpha_0 = 1$). Other examples of this class are:

(v) $\Omega = E_2^{hm} = \Pi_h^m$ with the normalized Hamming metric

$$d((\varepsilon, \boldsymbol{\pi}), (\varepsilon', \boldsymbol{\pi}')) = \frac{1}{hm} \left| \{(i, j); 1 \leq i \leq m, 1 \leq j \leq h, (\varepsilon_i(j), \pi_i(j)) \neq (\varepsilon'_i(j), \pi'_i(j)) \} \right|$$

is in $\mathscr{S}(2, hm)$. Indeed, taking D^k to be the decompositions into the sets determined by the first k = (i-1)h + j $(1 \le i \le m, 1 \le j \le h)$ coordinates, if $A_s^k, A_t^k \in D^k$ have the same first k-1 coordinates, we take $\varphi : A_s^k \to A_t^k$ which replaces $\varepsilon_i(j) = \varepsilon_i^{(s)}(j)$ by $\varepsilon_i^{(i)}(j)$ and interchanges $\pi_i(j) = \pi_i^{(s)}(j)$ with $\pi_i^{(i)}(j)$, the change affecting at most two coordinates.

Thus, if $h_n m_n \ge n$ and $\Omega_n = E_{2}^{h_n m_n} \times \prod_{h_n}^{m_n}$, then $(\Omega_n)_{n=1}^{\infty}$ is a $\frac{1}{64}$ -normal Levy family.

(vi) C_m^n , the space of all (unordered) *m*-tuples from $\{1, \ldots, n\}$ with the normalized Hamming metric, is also in $\mathcal{S}(2, n)$. Once again, D^k is the decomposition determined by the first *k* coordinates. If A_i^k has 0 at the *k*-th coordinate and A_j^k has 1, then $\varphi_{i,j}^k$ puts 1 at the *k*-th coordinate and replaces the first nonzero coordinate after the *k*-th by a zero. Thus, $(C_m^n)_{n=1}^{\infty}$ is a $\frac{1}{64}$ -normal Levy family.

(vii) The same martingale argument as in [13] shows that if (Ω, d, μ) is any n.m.p.s., then the product spaces Ω^n with the l_1 -sum metric

$$d_n^{\mathsf{I}}(s,t) = \frac{1}{n} \sum_{i=1}^n d(s_i,t_i)$$

and the product measure μ^n , form a $\frac{1}{16}$ -normal Levy family. Indeed, letting F_k (k = 0, ..., n) be the field generated by the first k coordinates, we get for every $f: \Omega^n \to R$ satisfying $|f(s) - f(t)| \leq d_n^1(s, t)$,

$$|\mathbf{E}(f|F_k) - \mathbf{E}(f|F_{k-1})| \leq \frac{1}{n}$$
 hence $\mu^n \{|f - \mathbf{E}f| \geq \delta\} \leq 2\exp(-\delta^2 n/4)$ etc.

2.3. The Levy-function estimates enable us to show concentration in measure of functions: If $\alpha_{\Omega}(\delta) \leq \alpha_0 e^{-\tau \delta^2}$ and $f: \Omega \to \mathbf{R}$ has modulus of continuity $\omega_f(\delta)$, consider a Levy mean (median) M_f of f, i.e., such that $\mu\{t; f(t) \leq M_f\} \geq \frac{1}{2}$ and $\mu\{t; f(t) \geq M_f\} \geq \frac{1}{2}$. Then

$$\mu\{t; |f(t) - M_f| \leq \omega_f(\delta)\} \geq 1 - 2\alpha_{\Omega}(\delta).$$

Thus, given N such functions f_1, \ldots, f_N , we have for every $\delta > 0$

$$\mu(\{t \in \Omega; |f_i(t) - M_{f_i}| \leq \omega_{f_i}(\delta), i = 1, \ldots, N\}) \geq 1 - 2N\alpha_{\Omega}(\delta).$$

2.4. The Levy mean is close to the average $\mathbf{E}f = \int_{\Omega} f(t) d\mu$: For every $\delta > 0$ we have

$$|M_f - \mathbf{E}f| \leq \omega_f(\delta) + 2\omega_f(1)\alpha_{\Omega}(\delta)$$

([2], p. 9).

2.5. Let $F = \{f_i\}_{i=1}^N$ be a family of N functions on (Ω, d, μ) . In the further applications it is crucially important to find at least one $t_0 \in \Omega$ (the same for all the family $\{f_i\}_{i=1}^N$) such that every $f_i(t_0)$ is close enough to its average \mathbf{E}_{f_i} . Of course, some conditions should be imposed on the continuity of the f_i , e.g. Hölder-continuity. Combining 2.3 and 2.4 leads to such a result.

PROPOSITION. If (Ω, d, Ω) is an n.m.p.s. with $\alpha_{\Omega}(\delta) \leq \alpha_0 e^{-\tau \delta^2}$ and $f_i : \Omega \to \mathbb{R}$, i = 1, ..., N satisfy $|f_i(s) - f_i(t)| \leq Cd(s, t)^{\gamma}$ (for i = 1, ..., N and all $s, t \in \Omega$), then a sufficient condition for the existence of $t \in \Omega$ with $|f_i(t) - \mathbb{E}f_i| < \varepsilon$ for i = 1, ..., N is

$$C < \frac{\varepsilon}{3} \min\left(\frac{1}{3}N, \left(\frac{\tau}{\log 2\alpha_0 N}\right)^{\gamma/2}\right).$$

PROOF. If

$$\delta > \left(\frac{\log 2\alpha_0 N}{\tau}\right)^{1/2}$$

yet $C\delta^{\gamma} < \varepsilon/3$, then by 2.3

$$\mu\left(\left\{t\in\Omega; |f_i(t)-M_{f_i}|<\frac{\varepsilon}{3}, i=1,\ldots,N\right\}\right)>1-2N\alpha_0e^{-\tau\delta^2}>0,$$

while by 2.4,

$$|M_{f_i}-\mathbf{E}_{f_i}|<\frac{\varepsilon}{3}+2C\alpha_0e^{-\tau\delta^2}<\frac{2}{3}\varepsilon.$$

3. The finite-dimensional Krivine theorem

Applying the results of Section 2 to normed linear spaces, we shall use the following two simple lemmas:

3.1. LEMMA. If $\|\cdot\|$, $\|\|\cdot\|$ are two norms on a linear space so that $\|\|x\| - \|\|x\|\| \le \varepsilon/10$ for all x in an $\varepsilon/10$ -net of the $\|\|\cdot\||$ -unit sphere, then $\|\|\|$ and $\|\|\cdot\|\|$ are $(1 + \varepsilon)$ -isomorphic.

(For the straightforward proof cf., e.g., the proof of Theorem 2 in [2].)

3.2. LEMMA. For every norm on \mathbb{R}^m and every $\varepsilon > 0$, there is an ε -net x_1, \ldots, x_N for the unit sphere with $N < (1 + 2/\varepsilon)^m$ ([3], Lemma 2.5).

3.3. The following finite-dimensional version of Krivine's construction of almost l_p^N subspaces from symmetric sequences is given in [2] (Theorem 3.1).

THEOREM. If (y_1, \ldots, y_n) is a symmetric finite sequence in a normed space X satisfying

(*)
$$C_1^{-1}\left(\sum_{i=1}^n |\alpha_i|^p\right)^{1/p} \leq \left\|\sum_{i=1}^n \alpha_i y_i\right\| \leq C_2\left(\sum_{i=1}^n |\alpha_i|^p\right)^{1/p}$$

for every $\alpha_1, \ldots, \alpha_n$, then for every $\varepsilon > 0$ there is a block sequence (u_1, \ldots, u_k) with respect to (y_1, \ldots, y_n) with

$$(**) \quad (1-\varepsilon)\left(\sum_{j=1}^{k} |\alpha_{j}|^{p}\right)^{1/p} \leq \left\|\sum_{j=1}^{k} \alpha_{j} u_{j}\right\| \leq (1+\varepsilon)\left(\sum_{j=1}^{k} |\alpha_{j}|^{p}\right)^{1/p} \quad \text{for every } \alpha_{1}, \ldots, \alpha_{k},$$

where

$$k \geq \Gamma^{3p} n^{\Gamma}, \qquad \Gamma = \left(\frac{\varepsilon}{36C_1C_2}\right)^p.$$

(In fact, the u_i are equally distributed and are constructed as a "geometric series" — a normalization of a disjoint sum of h bumps of length $((a + 1)/a)^i$ and height $((a + 1)/a)^{(h-j)/p}$, where a, h are specially chosen integers.)

3.4. By 3.3, our task in the quantitative Krivine theorem reduces to getting "good" symmetric sequences in isomorphs of l_p .

THEOREM. If the sequence (x_1, \ldots, x_n) in a normed space satisfies (*) above then, for every $\varepsilon > 0$, it has a block sequence (y_1, \ldots, y_k) satisfying (**), where

$$k \sim \kappa(\varepsilon, C_1 C_2, p) n^{\Gamma/3}, \qquad \Gamma = \left(\frac{\varepsilon}{36C_1C_2}\right)$$

and the function κ is easily computed from the estimate on m below and Theorem 3.3.

PROOF. Partition (x_1, \ldots, x_n) into m subsequences of h elements each, $(x_{1,1}, x_{1,2}, \ldots, x_{1,h}), (x_{2,1}, \ldots, x_{2,h}), \ldots, (x_{m,1}, \ldots, x_{m,h})$ and define, for $a \in \mathbb{R}^m$, $t \in (E_2^m)^h$, $\pi \in (\Pi_m)^h$:

$$\varphi_a(t,\boldsymbol{\pi}) = \left\| \sum_{i=1}^h \sum_{j=1}^m t_i(j) a_{\pi_i(j)} \boldsymbol{x}_{i,j} \right\|.$$

Let $||| a ||| = \mathbf{E}(\varphi_a)$ (over $E_2^{mh} \times \prod_m^h$). Then

$$||| a ||| \geq \frac{1}{C_1} h^{1/p} || a ||_p,$$

so that if $||| \boldsymbol{a} ||| = 1$ then $|| \boldsymbol{a} ||_{\infty} \le || \boldsymbol{a} ||_{p} \le C_1 h^{-1/p}$ and therefore

$$\begin{split} \omega_{\varphi_{a}}(\delta) &= \sup \left\{ \left\| \sum_{i=1}^{h} \sum_{j=1}^{m} t_{i}(j) a_{\pi_{i}(j)} x_{i,j} - t_{i}'(j) a_{\pi_{j}'(j)} x_{i,j} \right\| ; \\ &(t_{i}(j), \pi_{i}(j)) \neq (t_{i}'(j), \pi_{i}'(j)) \text{ at most } hm\delta \text{ times} \right\} \\ &\leq 2 \sup \left\{ \left\| \sum_{\nu=1}^{hm\delta} \alpha_{i_{\nu}} x_{i_{\nu}} \right\| ; \max_{\nu} |\alpha_{i_{\nu}}| \leq C_{1} h^{-1/p} \right\} \\ &\leq 2 C_{2} \sup \left\{ \left(\sum_{\nu=1}^{hm\delta} |\alpha_{i_{\nu}}|^{p} \right)^{1/p} ; \max_{\nu} |\alpha_{i_{\nu}}| \leq C_{1} h^{-1/p} \right\} \\ &= 2 C_{1} C_{2} (m\delta)^{1/p}. \end{split}$$

Let $a_{\nu}, \nu = 1, ..., N$, $N = \frac{1}{2}(25/\varepsilon)^m$ be an $\varepsilon/10$ -net for the $||| \cdot |||$ -unit sphere. To find $(t, \pi) \in E_2^{mh} \times \prod_m^h$ with $|\varphi_{a_{\nu}}(t, \pi) - 1| \le \varepsilon/10$ for all ν it suffices, by 2.5 and 2.2(v), that

$$2C_1 C_2 m^{1/p} < \frac{\varepsilon}{30} \min\left(\frac{1}{6} \left(\frac{25}{\varepsilon}\right)^m, \left(\frac{hm}{64m \log \frac{25}{\varepsilon}}\right)^{1/2p}\right)$$

(since in our case $\alpha_0 = 1$ and $\tau = hm/64$), hence that

$$m^{1/p} < \frac{\varepsilon}{60C_1C_2} \min\left(\frac{1}{6}\left(\frac{25}{\varepsilon}\right)^m, \left(\frac{\varepsilon h}{1600}\right)^{1/2p}\right),$$

and this is satisfied if, e.g.,

$$m = \frac{1}{12} \varepsilon^{(2p+1)/3} (60C_1C_2)^{-2p/3} n^{1/3}$$

(and $25^m > 360C_1C_2m$). Since $||| \cdot |||$ is symmetric, $z_{\nu} = \sum_{i=1}^{h} t_i(\pi_i^{-1}\nu) x_{i,\pi_i^{-1}(\nu)}$ $\nu = 1, \dots, m$ is $(1 + \varepsilon)$ -symmetric by Lemma 3.1.

Applying Theorem 3.3 (after $(1 + \varepsilon)$ -change of the norm) we get y_1, \ldots, y_k satisfying (**).

3.5. This result is "almost" exact in the following sense: we cannot get here a power $k = n^{\alpha}$ with α not dependent on ε or on $C = C_1 C_2$.

EXAMPLE. Let $p_n \leq q_n \leq 2$ satisfy

$$\frac{1}{p_n} - \frac{1}{q_n} = \frac{\log C}{\log n} \; .$$

Then by [6] we know that $d(l_{p_n}^n, l_{q_n}^n) = C$. If E is any n^{α} -dimensional subspace of $l_{q_n}^n$ then, by a result of Lewis [8],

$$d(E, l_2^{n^{\alpha}}) \leq n^{\alpha(q_n^{-1}-1/2)},$$

while, by [6],

$$d(l_{p_n}^{n^{\alpha}}, l_2^{n^{\alpha}}) = n^{\alpha(p_n^{-1} - 1/2)}$$

Hence

$$d(E, l_{p_n}^{n^{\alpha}}) \geq n^{\alpha(p_n^{+1}-q_n^{-1})} = C^{\alpha},$$

and if we want it to be $\leq 1 + \varepsilon < e^{\varepsilon}$, we must have $\alpha < \varepsilon / \log C$ (similar reasoning was used in [1]).

4. Symmetric sets in the range

4.1. Another application of measure concentration is to find large "almost symmetric" sets in the range of Lipschitz-Hölder functions on an n.m.p.s. (Ω, d, μ) . By 2.2 (vii), the powers $(\Omega^n)_{n=1}^{\infty}$ form a $\frac{1}{16}$ -normal Levy family in the l_1 -sum metric d_1^n . It may happen that $(\Omega^n)_{n=1}^{\infty}$ is a normal Levy family even in the weaker l_r -sum metric,

$$d_r^n(s,t) = m^{-1/r} \left(\sum_{i=1}^m d_i(s_i,t_i)^r \right)^{1/r}$$

for some $r \ge 1$ (as in the case 2.2(ii) of $\Omega = S_{m-1}$, where r = 2). In fact the most natural applications of the following proposition are to the cases $\Omega = E_2^m$, r = 1 and $\Omega = S_{m-1}$, r = 2; see 4.3(i) and (ii).

4.2. PROPOSITION. Let (Ω, d, μ) be a compact n.m.p.s. with a measurepreserving isometric fixed-point free involution $t \to -t$ and such that, for some $r \ge 1$ and τ , $(\Omega^m)_{m=1}^{\infty}$ is a τ -normal Levy family with the l,-sum metric and the product measure μ^m . Let $f: \Omega \to X$ be a non-0 odd function (i.e., with f(-t) = -f(t)) satisfying $||f(s) - f(t)|| \le Cd(s, t)^{\gamma}$ for some $0 < \gamma \le 1$, and let C_q $(2 \le q \le 1)$ ∞) be the q-Rademacher cotype constant of the normed linear space X ($C_q = \sup(\sum_{i=1}^{n} ||x_i||^q)^{1/q}$; $x_i \in X$, ($\mathbf{E}(||\sum_{i=1}^{n} \varepsilon_i x_i||^q)^{1/q} \leq 1$) if $2 \leq q < \infty$, $C_{\infty} = 1$). Then, for every $\varepsilon > 0$, a $(1 + \varepsilon)$ -symmetric m-tuple exists in the range of f, where

$$m = \left(\frac{\varepsilon \mathbf{E}(||f||)}{30CC_q} \left(\frac{\varepsilon\tau}{20}\right)^{\gamma/2}\right)^{\min(q/(q-1),r/\gamma)}$$

PROOF (a modification of the proof of Theorem 2.2 in [2]). Since Ω is compact, we can specify a "positive half" Ω^+ of Ω so that $\mu(\Omega^+) = \frac{1}{2}$ and $\Omega^+ \cap (-\Omega^+) = \emptyset$. For every $a \in \mathbb{R}^m$ define the function $\varphi_a(t) = \|\sum_{j=1}^m a_j f(t_j)\|$ on Ω^m , and then define on \mathbb{R}^m :

$$||| \mathbf{a} ||| = \mathbf{E}(\varphi_a) = \int_{\Omega} \cdots \int_{\Omega} \left\| \sum_{j=1}^m a_j f(t_j) \right\| d\mu(t_1) \cdots d\mu(t_m).$$

 $\|\cdot\|$ is clearly a semi-norm on \mathbf{R}^m . It is symmetric, since if $\boldsymbol{\varepsilon} \in E_2^m$ and $\pi \in \Pi_m$ then

$$|||(\varepsilon, \pi)(\boldsymbol{a})||| = \int_{\Omega} \cdots \int_{\Omega} \left\| \sum_{j=1}^{m} \varepsilon_{j} a_{\pi(j)} f(t_{j}) \right\| d\mu(t_{1}) \cdots d\mu(t_{m})$$
$$= \int_{\Omega} \cdots \int_{\Omega} \left\| \sum_{j=1}^{m} a_{j} f(\varepsilon_{\pi^{-1}j} t_{\pi^{-1}j}) \right\| d\mu(t_{1}) \cdots d\mu(t_{m})$$
$$= \int_{\Omega} \cdots \int_{\Omega} \left\| \sum_{j=1}^{m} a_{j} f(s_{j}) \right\| d\mu(s_{1}) \cdots d\mu(s_{m})$$
$$= ||| \boldsymbol{a} |||.$$

Since $\|\cdot\|$ is unconditional,

$$||| a ||| \ge \max_{i} ||| a_{i}e_{i} ||| = \max_{i} |a_{i}| \mathbf{E}(||f||),$$

and $\|\cdot\| \cdot \|$ is a norm. We also have, for every $1 \le q < \infty$,

$$\|\| \boldsymbol{a} \|\| = \int_{\Omega^+} \cdots \int_{\Omega^+} \sum_{\varepsilon \in E_{\tau}^m} \left\| \sum_{j=1}^m \varepsilon_i a_j f(t_j) \right\| d\mu(t_1) \cdots d\mu(t_m)$$

$$\geq \frac{2^m}{C_q} \int_{\Omega^+} \cdots \int_{\Omega^+} \left(\sum_{j=1}^m |a_j|^q \|f(t_j)\|^q \right)^{1/q} d\mu(t_1) \cdots d\mu(t_m)$$

$$= \frac{1}{C_q} \int_{\Omega} \cdots \int_{\Omega} \left(\sum_{j=1}^m |a_j|^q \|f(t_j)\|^q \right)^{1/q} d\mu(t_1) \cdots d\mu(t_m)$$

$$\geq \frac{1}{C_q} \|\boldsymbol{a}\|_q \mathbf{E}(\|f\|).$$

Therefore, if $\|\| \mathbf{a} \|\| = 1$ then $\| \mathbf{a} \|_q \leq C_q / \mathbf{E}(\| f \|)$ and, for every $s, t \in \Omega^m$, we have

$$\begin{aligned} |\varphi_{a}(s) - \varphi_{a}(t)| &\leq \sum_{j=1}^{m} |a_{j}| \|f(s_{j}) - f(t_{j})\| \\ &\leq \|a\|_{q} \left(\sum_{j=1}^{m} \|f(s_{j}) - f(t_{j})\|^{q/(q-1)}\right)^{(q-1)/q} \\ &\leq \frac{CC_{q}}{\mathbf{E}(\|f\|)} \left(\sum_{j=1}^{m} d(s_{j}, t_{j})^{\gamma q/(q-1)}\right)^{(q-1)/q}. \end{aligned}$$

Since $\sum_{j=1}^{m} d_j^{\alpha}$ ($0 < \alpha \le 2$) constrained by $d_j \ge 0$, $\sum_{j=1}^{m} d_j' = m\delta'$ ($r \ge 1$) attains its maximum when $d_j = \delta$ (j = 1, ..., m) if $\alpha \le r$, and when $d_1 = m^{1/r}\delta$, $d_j = 0$ (j = 2, ..., m) if $\alpha \ge r$, we get the estimates:

$$\omega_{\varphi_a}(\delta) \leq \frac{CC_q}{\mathbf{E}(\|f\|)} m^{(q-1)/q} \delta^{\gamma} \qquad \text{if } \frac{\gamma q}{q-1} \leq r,$$
$$\omega_{\varphi_a}(\delta) \leq \frac{CC_q}{\mathbf{E}(\|f\|)} m^{\gamma/r} \delta^{\gamma} \qquad \text{if } \frac{\gamma q}{q-1} \geq r$$

(for $q = \infty$ we simply have

$$\omega_{\varphi_a}(\delta) \leq \frac{Cm}{\mathbf{E}(\|f\|)} \,\delta^{\gamma} \Big) \,.$$

Take an $\varepsilon/10$ -net for the $||| \cdot |||$ -unit sphere, $(\mathbf{a}_{\nu})_{\nu=1}^{N}$, with $2N \sim (30/\varepsilon)^{m}$. Since $E(\varphi_{\mathbf{a}_{\nu}}) = ||| \mathbf{a} ||| = 1$, we can apply 2.5 to get $\mathbf{t} \in \Omega^{m}$ so that $|\varphi_{\mathbf{a}_{\nu}}(\mathbf{t}) - 1| \leq \varepsilon/10$ for all $\nu = 1, \ldots, N$, provided that

$$\frac{CC_q}{\mathbf{E}(\|f\|)} m^{\max((q-1)/q,\gamma/r)} < \frac{\varepsilon}{30} \left(\frac{\varepsilon\tau}{30}\right)^{\gamma/2} \quad (\text{and } m > \log 2\alpha_0\tau).$$

4.3. (i) In the special case $f: S_{k-1} \to S(X)$ (the unit sphere of X) in which r = 2, $\tau = \pi^2 k/2$, Proposition 4.1 yields a $(1 + \varepsilon)$ -symmetric sequence of length $\theta \varepsilon^3 (CC_q)^{(1-q)/q} k^{\gamma q/2(q-1)}$ ([2], Theorem 2.2).

(ii) A similar estimate is obtained for $f: E_2^k \to S(X)$. This time r = 1, $\tau = 2k$, hence we get a $(1 + \varepsilon)$ -symmetric sequence of length $\theta \varepsilon^3 (CC_q)^{-2} k^{\min(1/2, \gamma q/2(q-1))}$.

4:4. COROLLARY. If (x_1, \ldots, x_k) is a sequence in the unit ball of the normed linear space X such that $E(||\Sigma_{i=1}^k \varepsilon_i x_i||) \ge \theta k^{1/p}$ for some $1 \le p < 2$, then there are m choices of signs $\varepsilon^j \in E_2^m$ so that the sequence $y_j = \sum_{i=1}^k \varepsilon_i^j x_i$, $j = 1, \ldots, m$ is $(1 + \varepsilon)$ -symmetric where $m = ck^{1/p-1/2}$, $c = \varepsilon^{3/2} \theta/200$.

PROOF. Consider $f: E_2^k \to X$ defined by $f(t) = \sum_{i=1}^k t_i x_i$. By the triangle in-

equality, $||f(s) - f(t)|| \le 2kd(s, t)$. By Proposition 4.2 with $q = \infty$, $C_q = 1$, we can take

$$m = \frac{\varepsilon \theta k^{1/p}}{30 \cdot 2k} \left(\frac{\varepsilon k}{10}\right)^{1/2} = \varepsilon^{3/2} \frac{\theta k^{1/p-1/2}}{60\sqrt{10}}$$

This result which we have for a "linear type" sequence by a "nonlinear" general approach is not the best possible. In this case the methods of Johnson and Schechtman and Pisier yield better results (cf. [11]).

4.5. Unfortunately, one cannot get a "good" $n = n(k, C, \gamma)$ so that an f as in 4.3(i) or (ii) will exist for all *n*-dimensional spaces X. This is shown by the following argument (cf. [5]): Let $X = l_n^n$, and f as in 4.3. Then each coordinate $f_i(t) = (f(t))_i$ is odd, hence $\mathbf{E}f_i = M_{f_i} = 0$. It satisfies also the same Lipschitz-Hölder estimate, hence by 2.5,

$$\mu\{t; |f_i(t)| < 1, i = 1, \dots, n\} > 0 \qquad \text{if } C < \frac{1}{3} \min\left(\frac{n}{3}, \left(\frac{\tau}{\log 2\alpha_0 n}\right)^{\gamma/2}\right)$$

This cannot happen since $\max_{1 \le i \le n} |f_i(t)| = 1$ for all $t \in \Omega$. Thus, for n > 10C we must have $\tau < (3C)^{2/\gamma} \log 2\alpha_0 n$. But $\tau = \theta k$ for some θ , hence we must have

$$n(k,C) > \frac{1}{2\alpha_0} \exp(\theta_1 k C^{-2/\gamma}).$$

5. Symmetric block sequences

5.1. The measure concentration argument in E_2^n was applied in [2], Theorem 2.3 to get from a "type attaining" sequence in a normed space X an "almost unconditional" block sequence and then, in Theorem 2.4, the measure concentration argument in Π_n was used to get an "almost symmetric" block sequence. This could have been done in one step using the measure concentration in the product space $E_2^{nk} \times \Pi_n^k$, improving the estimate from $cn^{(2-p)/3p(2+p)}$ to $c_1n^{(1-p)/p(2+p)}$ (for details, see: D. Amir, *Some applications of concentration phenomena*, Longhorn Notes, The University of Texas Functional Analysis Seminar, 1982–1983, pp. 161–178).

5.2. There is a calculational mistake in Theorem 2.5 of [2]. We shall give a "more correct" version of it here.

THEOREM. Let $p \in (1,2)$, $\theta, \varepsilon \in (0,1)$. If (x_1, \ldots, x_n) is a sequence of norm-1 elements in a normed space x such that $\mathbf{E}(\|\sum_{i=1}^n \varepsilon_i x_i\|) \ge \theta n^{1/p}$, then there is a

 $(1 + \varepsilon)$ -symmetric sequence $\{y_1, \ldots, y_m\}$ of blocks with disjoint support and ± 1 coefficients and of length

$$m = \frac{1}{500} \, \epsilon^{3/2} n^{(2-p)^2/3p^3}$$

PROOF. Let

$$\beta = \frac{p}{2} + \frac{(2-p)^2}{2p}, \qquad \alpha = \frac{2p\beta}{2\beta+p}$$

Then $0 < \alpha < \beta < 1$. As in the proof of Theorem 2.5 in [2] we get a subset, which we may assume to be x_1, \ldots, x_{km} , $km = n^{1/p}$, such that

$$\mathbf{E}\left(\left\|\sum_{\mathbf{x}_{\nu}\in A}\varepsilon_{\nu}\mathbf{x}_{\nu}\right\|\right) \geq |A|^{\beta/p}$$

for each of its subsets A of length $|A| \ge (km)^{\alpha/\beta}$ (in particular, by our choice of m, k, α and β , when $|A| \ge k$, provided $n > n_0(\varepsilon, p)$).

For $a \in \mathbb{R}^{m}$, $(t, \pi) \in E_{2}^{km} \times \prod_{km}$ define

$$\varphi_a(t, \pi) = \left\| \sum_{j=1}^m a_j \sum_{i=(j-1)k+1}^{jk} t_i x_{\pi(i)} \right\|,$$

and then $||| \mathbf{a} ||| = \mathbf{E}(\varphi_a)$. We have $||| \mathbf{a} ||| \ge k^{\beta/p} || \mathbf{a} ||_{\infty}$ hence, if $||| \mathbf{a}_{\nu} ||| = 1$, then $\omega_{\varphi_{\mathbf{a}_{\nu}}}(\delta) \le 2mk^{1-\beta/p}\delta$. Taking an $\varepsilon/10$ -net for the $||| \cdot |||$ -sphere, $\mathbf{a}_1, \ldots, \mathbf{a}_N$, $N \sim (20/\varepsilon)^m$, $(\mathbf{t}, \boldsymbol{\pi}) \in E_2^{km} \times \prod_{km}$ satisfying

$$|\varphi_{a_{\nu}}(t, \boldsymbol{\pi}) - 1| \leq \varepsilon/10$$
 for $\nu = 1, \dots, N$

exists provided

$$2mk^{1-\beta/p} < \frac{\varepsilon}{30} \left(\frac{k\varepsilon}{64}\right)^{1/2},$$

hence if

$$m < \frac{1}{480} \varepsilon^{3/2} k^{(2-p)^2/2p^2},$$

which holds in our case (we have to check that $n^2 < k^{3p}$, i.e., that $m^{3p} < n$). By Lemma 3.1,

$$y_j = \sum_{i=(j-1)k+1}^{jk} t_i x_{\pi(i)}, \qquad j = 1, \ldots, m,$$

is $(1 + \varepsilon)$ -symmetric.

REMARK. We also get an estimate on the characteristic function $\lambda(\nu) = \|\sum_{i=1}^{\nu} y_i\|$ of the (almost) symmetric sequence $(y_i)_{i=1}^{m} : \lambda(\nu) \ge \eta(k\nu)^{\beta/p}$.

REFERENCES

1. N. Alon and V. D. Milman. Embedding of l_{∞}^{k} in finite dimensional Banach spaces, Isr. J. Math. 45 (1983), 265–280.

2. D. Amir and V. D. Milman, Unconditional and symmetric sets in n-dimensional normed spaces, Isr. J. Math. 37 (1980), 3-20.

3. T. Figiel, J. Lindenstrauss and V. D. Milman, The dimensions of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94.

4. M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality, Am. J. Math. 105 (1983), 843–854.

5. M. Gromov and V. D. Milman, Brunn theorem and a concentration of volume phenomena for symmetric convex bodies, Geometrical Aspects of Functional Analysis, Seminar Notes, Tel Aviv, 1983-4.

6. V. I. Gurari, M. I. Kadec and V. I. Macaev, On Banach-Mazur distance between certain Minkowski spaces, Bull. Acad. Polon. Sci. 13 (1965), 719-722.

7. J. L. Krivine, Sous espaces de dimension finis des espaces de Banach reticulés, Ann. of Math. 104 (1976), 1-29.

8. D. R. Lewis, Finite dimensional subspaces of L_p, Studia Math. 63 (1978), 207-212.

9. B. Maurey, Construction de suites symétriques, Comptes Rendus Acad. Sci. Paris. 288 (1979), A679-681.

10. V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Funct. Anal. Appl. 5 (1971), 28-37 (transl. from Russian).

11. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Banach Spaces, Springer Lecture Notes, to appear.

12. G. Pisier, On the dimension of the l_p^n -subspaces of Banach spaces, for $1 \le p < 2$, Trans. Am. Math. Soc. 276 (1983), 201-211.

13. G. Schechtman, Levy type inequality for a class of finite metric spaces, in Martingale Theory in Harmonic Analysis and Applications, Cleveland 1981, Springer Lecture Notes in Math. No. 939, 1982, pp. 211-215.